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Abstract—Next generation data processing systems must 
deal with very high data ingest rates and massive volumes 
of data.  Such conditions are typically encountered in the 
Intelligence Community (IC) where analysts must search 
through huge volumes of data in order to gather evidence 
to support or refute their hypotheses.  Their effort is made 
all the more difficult given that the data appears as 
unstructured text that is written in multiple languages 
using characters that have different encodings.  Human 
Analysts have not been able to keep pace with reading the 
data and a large amount of data is discarded even though 
it might contain key information.  The goal of our project 
is to assess the feasibility of incrementally replacing 
humans with automation in key areas of information 
processing.  These areas include document ingest, content 
categorization, language translation, and context-and-
temporally-based information retrieval.   
 
Mathematical transformation algorithms, when 
implemented in rapidly reconfigurable hardware, offer the 
potential to continuously (re)process and (re)interpret 
extremely high volumes of multi-lingual, unstructured 
text data.  These technologies can automatically elicit the 
semantics of streaming input data, organize the data by 
concept (regardless of language), and associate related 
concepts in order to parameterize models.  To test that 
hypothesis, we are building an experimentation testbed 
that enables the rapid implementation of semantic 
processing algorithms in hardware.  The system includes 
a high-performance infrastructure that includes hardware-
a accelerated content processing platform; mass storage to 
hold training data, test data, and experiment scenarios; 
and tools for analysis and visualization of the data.  
 
In our first use of the testbed, we performed an 

experiment where we implemented three transformation 
algorithms using FPX hardware platforms to perform 
semantic processing on document streams.  Our platform 
uses Field-programmable Port Extender (FPX) modules 
developed at Washington University in Saint Louis [3].   
 
This paper describes our approach to building the 
experimental hardware platform components, discusses 
the major features of the circuit designs, overviews our 
first experiment, and offers a detailed description of the 
results, which are promising.  
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1. INTRODUCTION 
In the Intelligence Community (IC) analysts must search 
through huge volumes of data in order to gather evidence 
to support or refute their hypotheses.  Their effort is made 
all the more difficult given that the data appears as 
unstructured text that is written in multiple languages 
using characters that have different encodings.  Data 
processing systems must deal with massive volumes of 
data and ingest content at very high rates.  The problem is 
that existing approaches to analyze and process data have 
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not keep pace with the increasing volumes of data.  Large 
volumes of data are discarded even though they might 
contain useful information.  We explored a new approach 
for analyzing and organizing intelligence data that 
provides for categorizing and translating the content of 
high speed data streams.  
 
 
Our approach uses mathematical transformation 
algorithms implemented in reconfigurable hardware to 
continuously (re)process and (re)interpret high volumes 
of multi-lingual unstructured text data.  The system can 
automatically elicit the semantics of streaming input data, 
organize the data by concept (regardless of language), and 
associate concepts with similar concepts needed to 
parameterize text processing models.  To evaluate the 
potential of this system, we are building an experimental 
testbed that enables rapid implementation of data 
processing algorithms in hardware.  The system provides 
a high-performance infrastructure consisting of a 
hardware-accelerated content processing platform; mass 
storage device that holds training data and experimental 
scenarios; and tools for analysis and visualization of the 
data.  
 
In our first use of the testbed, we performed an 
experiment where we implemented circuits to perform 
three transformation algorithms in hardware.  Together, 
they provided statistical analysis on the semantic content 
in document streams flowing through a network.  Our 
platform uses the Field-programmable Port Extender 
(FPX) modules developed at Washington University in 
Saint Louis.  Each FPX contains two large FPGAs – 
called the Reconfigurable Application Device (RAD) and 
the other called the Network Interface Device (NID) [3].  
Multiple RAD circuits implemented the semantic 
processing circuits to perform the “bag of words” style 
text analysis.  NID circuits were used to route data  
through the system at a bandwidth of 2.4 Gigabit/second. 
 We used this platform to implement our transforms and 
performed an experiment. The first part of this paper 
describes our approach to building the experimental 
hardware platform components including the major 
aspects of the circuit design and integration.   
 
This remainder of this paper is devoted to an overview of 
our first experiment and a detailed description of the 
results, which are promising.  We tested the performance 
of our transforms and hardware platform by analyzing 
postings to 12 Google groups.  The postings were divided 
into seven known categories, four unknown categories, 
and a large “chaff” category that we treated as noise.  We 
then compared the transforms on their ability to discover 
known categories when trained and on their ability to 
discover unknown categories without training in the 
presence of high and low noise levels.  Our results are 
promising.  For the known categories, all of the 
transforms were successful in identifying and organizing 

documents into known categories.  For the unknown 
categories, two of the transforms algorithms successfully 
identified some unknown but pure categories.  This 
second case is particularly important as tests the ability of 
our transforms self-organize historical data when new 
issues arise. 

2. A NEW APPROACH TO STREAMING 
DATA PROCESSING 

Innovative mathematical transformation algorithms 
implemented in software have shown promise for 
automatically understanding the content of documents [1, 
2, 3, 4, 5, 6].  Similarities between content from multiple 
sources can be computed, but computation can be very 
expensive -- O(n3) in some cases, where n is the number 
of documents that contain information. The high 
computational time limits the amount of information that 
can be processed.   To understand social indicators which 
predict hostility and conflict before it happens, massive 
amounts of data must be ingested in order to gain a 
ground truth and to determine how the information is 
relevant in multiple contexts.   
 
Development of a testbed that can perform transform 
algorithms in high-speed, reconfigurable hardware 
enables several key innovations.  First, it allows for the 
real-time management and processing of information.  
Live data can be processed in real-time as it arrives.  Data 
can also be re-processed as new contexts emerge.  Two 
methods for processing data flows are described below. 
 

 
Figure 1. A New Approach to Information 

Management 
 

“Track before Detect” Information Management  
Today’s processing flow involves the detection of a 
context, then the tracking of information that relates to 
that concept.  Specifically, the “detect and track” scheme 
can be described as:  
 

1. Filter all information being gathered and save 
only the information that is germane to the 
immediate problem. 
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2. Relate atomic facts in the data, including the 
names of people, places, things, and the 
relationships between them. 

3. Process the results with queries built to uncover 
“gold nuggets” of useful information. 

4. Track and report changes in the status of the 
information. 

As shown in Figure 1, the new  processing flow inverts 
the mechanism used by today’s flow.  Using the new 
flow, the process becomes:  

1. Catalog and save all information being gathered 
based upon atomic facts in the data. 

2. Populate many parallel hypotheses (concepts) 
with the facts and data. 

3. Use a machine to detect when a hypothesis has 
sufficient supporting facts (relevance) to warrant 
evaluation and reinterpretation of data. 

4. Aggregate evidence for the hypotheses, and 
report any changes that emerge. 

5. Adapt and refine concepts when indicated that a 
concept is either too broad or too specific. 

 
Future information processing systems must provide a 
large amount of cognitive support to the analyst about all 
the data that has been used in all on-going or past 
analyses. In other words, the system needs to be able to 
keep track of the original data, the relationships of the 
data to other information, and the reason why it was 
considered important at the time.  Additionally, since no 
analyst could possibly have “seen” all the data collected 
by the system, the system also needs to supply the means 
by which analysts can search for related information and 
discover new associations and patterns in the vast 
amounts of data.   

 
Figure 2.  Real-time concept-based streaming data 

processing 
 
A “concept-based” storage and retrieval approach enables 
“track before detect” by reducing the intellectual 
impedance mismatch between analysts and machines.  
Developing special-purpose computing machines to 
continuously (re)process and (re)interpret extremely large 
volumes of unstructured multi-lingual text data makes this 
possible.  And, the ability to process massive amounts of 

information quickly is the basis of our second innovation: 
 
Stream data in real-time into machines that self-
organize concepts from input semantics 
The basis for this innovation is that as data are streamed 
into the system, they are transformed by high-speed 
semantic processing circuits into points in multi-
dimensional space, as shown in Figure 2 (above).  
Documents containing similar information – that is, those 
that relate to similar concepts, will tend to cluster into 
similar regions of the multi-dimensional space.  A cluster 
region, defined as a set of points within a set distance 
from the centroid of the cluster, defines a concept.  This 
concept, in turn, is used as a basis to store and receive 
documents.  Clustering self-organizes the data. 
 
By attaching the concept storage space to a distributed 
data network, automated servers can rapidly retrieve data 
that had been collected from multiple sources and score 
how their position in the multiple-dimensional concept 
space relates to a new hypothesis.  Scoring circuits, also 
implemented as high-speed computing machines in 
reconfigurable hardware, can rapidly scan through vast 
amounts of data to determine what information is relevant 
to a new concept.   
 
The methodology described above allows us to not only 
organize data by concept, but also to continuously look 
through data and associate it with existing or newly 
formed hypotheses.  Since hypotheses can be thought of 
as being comprised of combinations of concepts, we can 
realize yet another innovation.  That is: 
 
Continuously reprocess and reinterpret data to update 
and score in real-time thousands of hypotheses 

 
Figure 3. Real-time hypothesis processing 

 
This final innovation will assist analysts to obtain 
evidence of when social indicators emerge. These data 
can come from various sources that include the Internet, 
intelligence gathering agencies, and public news feeds, as 
shown in Figure 3.  The text is instantly processed for 
semantic meaning, related contents are grouped together, 
and multiple hypothesis servers process the data in 
parallel to find new concepts and topics that emerge.  
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Because data are constantly being processed, hypothesis 
servers continually aggregate weak information in 
support for, or rejection of, both new and ongoing 
concepts.  Once a hypothesis gains sufficient support, 
action can be taken. 

3. TESTBED EXPERIMENTS 
The overall approach for conducting experiments is 
shown in Figure 4.  A blend of high-speed network 
devices and reconfigurable hardware is used to rapidly 
ingest and process data, while software is used to control 
and manage clusters.  Data is received over a network as 
text or HTML documents carried over standard 
Transmission Control Protocol / Internet Protocol 
(TCP/IP) packets.  A TCP processor decodes the packets 
that contain the document in one or more TCP/IP input 
flows.  Every word (baseword) in the document is 
analyzed for its semantic meaning.  All of the words in 
each document are then counted to determine their 
frequencies of occurrence.  A document vector is then 
generated which characterizes the content of the 
document.  This document vector is then scored against a 
set of vectors that represent known or emerging concepts. 
Thresholds are used to determine if content can be 
classified as an existing concept or if a new cluster should 
be formed.   

 
Figure 4.  Testbed Enables Real-Time, Semantic 

Classification of Content 
 
The testbed enables computationally intensive semantic 
processing functions to be performed in real-time.  Field 
Programmable Gate Arrays (FPGAs) are used to perform 
hardware-accelerated processing of the data at all of the 
levels described above.  By using FPGAs, all parts of the 
system can be dynamically reconfigured to perform new 
algorithms for data processing, content classification, 
and/or concept clustering.  Massive volumes of real data 
can be streamed through the system.  Measurements can 
be made of the system’s precision, recall, throughput, and 
latency.  
 
The testbed provides a modular environment where 
different hardware and software components can be used 

to process data.  New software can be used by 
downloading programs into the compute servers in the 
testbed.  New hardware circuits can be tested by 
dynamically reconfiguring one or more of the FPGAs in 
the testbed.  A variety of different mechanisms, 
implemented in software and/or hardware, can be used to 
scan, process, count, score, and cluster documents.  Well-
defined XML interfaces provide a common interface 
between computational modules so that most of the 
infrastructure can be reused in different experiments.   

4. DESIGN OF THE EXPERIMENT 
HARDWARE PLATFORM 

Our first experimental hardware platform has been 
prototyped and uses reconfigurable hardware to rapidly 
process content in FPGA hardware.  This system uses 
Field-programmable Port Extender (FPX) modules 
developed at Washington University in Saint Louis, to 
perform several layers of data processing functions in 
hardware.  Multiple FPX modules have been integrated 
into a Global Velocity GVS-1000 chassis.  A photograph 
of an FPX module and the GVS-1000 chassis is shown 
below. 

FPX Photo

NID (FPGA)

SRAM Memory

2.5 Gigabit
Network Interface

RAD (FPGA)

FPX

SDRAM Memory 
(backside)

GVS-1000

FPX Photo

NID (FPGA)

SRAM Memory

2.5 Gigabit
Network Interface

RAD (FPGA)

FPX

SDRAM Memory 
(backside)

GVS-1000  
Figure 5.  Field-Programmable Port Extender (FPX) 
Modules Mount in GVS-1000 System below Gigabit 

Ethernet or OC48 Line Cards 
 
Each FPX contains two large FPGAs – called the 
Reconfigurable Application Device (RAD) and the 
Network Interface Device (NID).  In addition to the 
FPGAs, each FPX cards includes two parallel banks of 
SRAM and two parallel banks of SDRAM.  
Reconfigurable hardware modules are deployed using 
logic within the vast resources of a Xilinx Virtex 
XCV2000E FPGA circuit that implement the RAD.   
 
The RAD circuits on the FPX have been used to 
implement the TCP processor, Baseword module, Count 
module, Score module, and a Report module.   All of 
these circuits have all been implemented as modular 
hardware components that make use of parallel finite state 
machines seas of combinatorial logic.  High-speed 
network interfaces allow the FPX to communicate other 
modules in the system and with other hardware and 
software outside of the system using standard Internet 
Protocol (IP) datagrams.  The detailed configuration of a 
GVS1000 system that performs semantic processing of 
TCP/IP traffic passing over a network is shown in Figure 
6.  For this circuit, five FPX cards were operated in 
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parallel in order to process content quickly. 
 
 

 
Figure 6.  Stacks of FPX Modules fit into a GVS-1000 
 
The FPX cards have connectors that allow them to be 
stacked on top of each other.  By stacking cards, data can 
be processed as streams that flow through multiple 
modules.  Each module transforms the data in a way that 
the output from one card provides the input for next card 
below.  A photograph that shows how five FPX cards 
were stacked to implement the semantic processing 
system is shown in Figure 7. 
 

 
Figure 7.  FPX Modules stacked to process stream 

with multiple modules 
 
TCP/IP Processing  
Over 85% of all traffic on the Internet today uses the 
TCP/IP protocol. TCP is a stream-oriented protocol 
providing guaranteed delivery and ordered byte flow 
services. A vast number of end systems communicate 
over the Internet.  Traffic is concentrated to flow over a 
relatively small number of routers which forward traffic 
through the core of the Internet. Currently, Internet 
backbones operate over communication links ranging in 
speed from OC-3 (155 Mbps) to OC-768 (40 Gbps) rates.  
 
Processing of TCP data flows at a location in the middle 
of the network is generally considered to be extremely 
difficult. Along the way, packets can be dropped, 
duplicated and re-ordered. Packet sequences observed 
within the interior of the network can be different from 

packets received and processed at the connection 
endpoints [9].  
 
The TCP processor which is used in this testbed enables 
complex network services to operate at gigabit speeds by 
processing TCP stream data directly in hardware.  The 
TCP processor tracks up to 8 million bidirectional TCP 
flows on an OC-48 (2.5 Gbps) network link. Network 
data packets are annotated with additional control signals 
which provide information about which data bytes 
correspond to the IP header, the TCP header, and the TCP 
payload section. There are also signals that indicate which 
TCP data bytes are parts of a consistent stream of data 
and which bytes should be ignored because they are 
retransmissions. Signals which indicate the Start of Flow 
(SOF) and End of Flow (EOF) are included along with a 
unique flow identifier so that the client can independently 
manage per-flow context [9]. 
 
Word Mapping  
The current hardware design provides for the 
representation of documents and document-prototypes as 
high-dimension feature vectors.  A Word Mapping Table 
(WMT) is used to map input from a universe of 1 million 
words into one of 4000 dimensions.  The WMT maps the 
hash of an input word to one of 1 million entries in a 
lookup table.  Each entry in the lookup table can then 
remap the word into one of the 4000 dimensions based on 
the semantics of the word.  Three approaches have thus 
far been explored to perform automatic, semi-automatic, 
and automatic selection of features used to create the 
WMT. 
 
Dictionary-based Word Mapping  
In the first approach, knowledge about the language itself 
was used to populate the WMT.  Words in a dictionary 
were first assigned to a large number of dimensions, and 
then dimensions were collapsed wherever a synonymous 
relationship was noted.  The dictionary of words was 
generated using a hybrid of tools, scripts, and (in some 
cases) human input.  Automated scripts were developed 
that applied stemming rules and searched words for 
common prefix and suffix extensions to quickly populate 
entries in the WMT with groups of words that had similar 
meaning.   
 
In one experiment, over 27,000 words, including proper 
nouns, were collapsed to 6,414 dimensions.  Further 
reduction was used to map the table into 4000 
dimensions.  Words which were not in the dictionary 
were hashed to any one of the 4000 dimensions. 
 
To understand the desired content of the Word Mapping 
Table as shown in Figure 8 below, consider how two 
dimensions in the table could be populated with words 
that represent the meanings of explosives and rockets.  
There are several specific names for explosives, such as 
“nitroglycerine”, “gelamex”, “dynamite”, and their 
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equivalents in Arabic, Greek, and other languages of 
interest.  Each of these input words will have a hash 
applied that maps it to any one of a million locations.  For 
example, given some hash function, H, it would be 
possible that H(“nitroglycerine”)=101,203 and that 
H(“gelamex”)=672,101.  Each of the possible resulting 
hash values is used to index an entry in the Word 
Mapping Table.  The million-entry WMT is then 
populated with pointers that remap the input word to a 
common baseword.  For example, if the baseword for 
explosive has been mapped to dimension number 1033, 
then: 
 
WMT(H(“nitroglycerine”))=WMT(101,203)=1033, and 
WMT(H(“gelamex”))=WMT(672,101)=1033 
 
Likewise, if rockets are mapped to dimension 2801, then: 
 

WMT(H("Nassar"))=2801, and 
WMT(H(“Qassam”))=2801 

 
Thus processing of different words with similar meanings 
is made possible.  A graphical view of the function of the 
word mapping table is shown below.  The Word Mapping 
Table itself is described to the system in a file with a 
XML format.  
 

H( “ ” )

H( “dynamite” )

H( “nitroglycerine” )
= 101,203

H( “gelamex” )
= 672,101

H( “Qassam” )

H( “Nassar” )

Input =  
Hash of

words that
may appear

in a document

Range = 0 .. 2^20 – 1
{ 0 .. 1,048,575 }

H(explosive)
= 1033

H(rocket)
= 2801

H( “irrelevant” )

0

3999

0

1,048,575

Word Mapping Table
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H( “gelamex” )
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Input =  
Hash of

words that
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in a document

Range = 0 .. 2^20 – 1
{ 0 .. 1,048,575 }

H(explosive)
= 1033

H(rocket)
= 2801

H( “irrelevant” )

0

3999

0

1,048,575

Word Mapping Table

 
 

Figure 8. Word Mapping Table (WMT) Allows Hash 
of Each of 1 Million Input Words to be Mapped into 

any Output Value in a 4000-Dimensional Vector 
  
Word Mapping with Pair-wise Differentiation 
The second method, explored by Fair Isaac, starts with an 
m-document training set partitioned into k known 
categories.  The most powerful discriminators for 
pairwise differentiation are used to generate data in the 
known categories.   
 
This method bypassed entirely the question of what 
words were in the lexicon and what words were not.  The 
hardware design represented all words using a million-
wide hash.  Each of the million buckets is mapped to one 
of the unit vectors in the 4000-dimensional space.  This 
mapping could be specified by the feature-selection 
algorithm or be reprogrammed as needed.   

 
There are downsides to the algorithm.  Even with one 
million unique words, is not possible to encode all of the 
unique four-letter sequences that can occur with a 26-
letter alphabet.  If a lexicon were to have few collisions 
due to nuisance strings, or quasi-words, extracted from 
binary documents (binary noise), significant collisions 
could occur.  The mapping from the million-wide 
representation to the 4000-dimensional representation 
would preserve any ambiguity about what string actually 
hashed to the original million-wide bucket. 
 
To avoid populating the table with quasi-words that have 
little value, computation is performed to determine the 
actual words that contribute most to the classification and 
clustering decisions. This computation requires 
significant computation and the algorithm’s running time 
is inherently nondeterministic. An unfortunate side effect 
of this optimization is that most words unseen in the 
training set are not assigned representation in the 4000-
dimension feature vector for a document.  Thus, 
clustering and category drift could only be based on those 
hash values that had proved useful in separating the 
training set's categories.  
 
Word Mapping with Information Retrieval 
The third method was based on ideas from information 
retrieval (IR).  Documents in each training set category 
were studied for the frequency of occurrence of words.  
The most used words, as defined as those that occur more 
than 0.1% of the time, are excluded from the table 
because they typically represent common nouns, verbs, 
and prepositions that add little meaning to the document.  
Excluding those, the next most frequent 100 and next 
most frequent 500 words are assigned to dimensions in 
the WMT. 
 
Use of duplicated dimensions is avoided for the most 
frequent 100 words.  Likewise, use of duplicate 
dimensions is minimized for the next most frequent 500 
frequent words.  2000 of the dimensions are reserved for 
words that were not seen in the training set (unknown 
terms).  A background inverse term frequency (ITF) and 
inverse document frequency are used (IDF) for weighting 
dimensions in dot products between document vectors.   
 
Implementation of the Word Mapping Circuit 
A block diagram of the word mapping circuit, as it was 
implemented in FPGA logic is shown below.  The circuit 
reads data input from the TCP/IP wrappers.  The word 
parser includes multiple modules to process text in 
different languages.  With English ASCII text, for 
example, words are processed as groups of 8-bit 
characters separated by white space.  With Arabic and 
Greek text, however, the circuit uses modules that process 
16 bits at a time to decode sequences of UTF-16 
characters.  For languages that have a notion of upper and 
lower case characters, the circuit can normalize the case 
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so that both variations of the same word are treated the 
same.  The policy can be altered by reconfiguration of the 
FPGA hardware. 
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Figure 9.  Block diagram of the word mapping circuit, 

as it was implemented in FGPA logic 
 
Once a word has been identified, a hash is computed 
using the word clustering module.  This module accesses 
the WMT, which itself is implemented in off-chip Static 
Random Access Memory (SRAM).  The values in the 
WMT each return a value in the range of {0..3999} and 
are used to identify the root meaning of the word. 
 
It is not always the case that an input packet will contain 
an entire word.  It is possible that a word will be split 
between packets when the data stream is segmented for 
transmission over a TCP/IP network.  The circuit supports 
identification of strings that cross packet boundaries.  
Synchronous Dynamic Random Access Memory 
(SDRAM) is used to store the state of each traffic flow’s 
context.  Words segmented across multiple, interleaved 
packets can still be identified in a TCP/IP steam by 
tracking the last K bytes of each stream in the large, off-
chip SDRAM.  The existing system tracks the last K=32 
bytes of data per stream. 
 
Word Frequency  
Word frequencies are counted for every active flow in the 
system for each dimension.  For each traffic flow, the 
count circuit computes the sum of the basewords that 
occur in each dimension of the document vector.  To 
support 4000-dimensional vectors that are used by the 
baseword circuit, the count circuit maintains the state of 
4000 parallel counters.   
 
A challenge for determining the word frequency for data 
that appears on a TCP/IP network is that packets from 
different flows can be interleaved as they pass through the 
network.  Count arrays resulting from flows that are 
interleaved will produce count array packets that are 
interleaved.  Data can appear when it arrives to the count 
circuit from a TCP/IP network.  Interleaved packets 
generate interleaved basewords.  Thus, basewords 
resulting from the content in the flows can be interleaved. 
 
As with the baseword circuit, the count circuit uses off-
chip SDRAM to maintain multiple contexts that track the 
state of each flow.  The count circuit supports 524,288 

(512k) flows that each requires storage of 4000 counters. 
 Each counter is represented with a 4-bit (1/2-byte) value. 
 A total of 512K*2K = 1 Gbyte of memory is used to 
store the state of all flows.   
 
Scoring  
Once a flow has ended, the resulting document vector is 
compared against a set of concept vectors.  In general, the 
FPGA could be programmed to compute a score using 
any desired Support Vector Machine (SVM) function.  
For the circuit implemented in the existing testbed, a dot 
product is computed of the document vector against a set 
stored concept vectors.   
 
Coefficients can be dynamically loaded into the score 
table.  This score table can be formatted in one of two 
ways.  One FPGA circuit was implemented that supports 
4-bit coefficients for a table of 30 concepts.  The other 
FPGA circuit that was implemented supports 8-bit 
coefficients for a table that supports 15 concepts.  Both 
circuits operate on the 4000-dimension vector. 
 
A high throughput of processing is achieved because the 
computation of the multiplication occurs in parallel for 
each concept.  Count values that define the incoming 
document vector arrive at a rate of 8 elements per clock 
cycle.  For the scoring circuit that supports 30 concepts, 
the system performs 8*30=240 parallel multiplications 
per clock cycle.  Over the duration of the 4000-element 
vector, the FPGA performs a total of 4000*30=120,000 
multiplications per document. Given that the system can 
score 150,000 documents per second, the parallel 
hardware performs 120,000*150,000 = 18 Billion 
multiplications per second.   
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Figure 10. Hardware circuits accelerate the 
classification of documents by computing the least-

squares distance (dot product) between an input 
vector and representative content.  At times of peak 

processing, the circuit performs 18 Billion 
multiplications per second.  
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5. DESCRIPTION OF THE EXPERIMENT  
 
A set of newsgroups were selected for analysis.  Scripts 
were written to automatically download content from 
Google’s newsgroup area.  A corpus was collected that 
included 2000 messages from the Internet newsgroups:  

• alt.sports.baseball.stl_cardinals 
• comp.ai.neural_nets 
• comp.programming.threads 
• humanities.musics.composers.wagner 
• misc.consumers.frugal_living 
• misc.writing.moderated 
• rec.equestrian 
• rec.martial_arts.moderated 
• sci.archeology.moderated 
• sci.logic 
• soc.libraries.talk   

 
The data was human analyzed for content and off-topic 
messages were removed.  Headers to the files were 
stripped so that the machine learning process would not 
have access to the newsgroup identifier. 
 
The training sets were generated through random 
selection to avoid training only on data that happened to 
consist of a few large threads. Chaff was downloaded 
from another newsgroup talk.origins.  That newsgroup 
has a large amount of off-topic content and flame 
messages and threads that were largely non-cohesive. 
 
Tests were run on the corpus with different amounts of 
training data and chaff.  The first set of experiments used 
no chaff and a training set which consisted of {1%, 33%, 
and 50%} of the files.  The second set of tests added 
random data so that 10% of the total files were chaff.  The 
experiment was again run using {1%, 33%, and 50%} of 
the data for training.  The third set of tests added more 
random data so that that 90% of the files in the corpus 
were chaff.  The experiment was run again using {33% 
and 50%} of the data for training 
 
Mathematical Transformation Algorithms 
In the experiment, we evaluated the three mathematical 
transform algorithms in terms of their ability to detect 
known categories when provided with training data on 
these categories and on their ability to discover unknown 
categories without training.  The first case is intended to 
model the situation where the transform organizes 
material related to a known context.  In many ways it 
parallels the traditional form of analysis where 
information related to a known concept is tracked and 
organized.  The second case investigates if transforms are 
able to self organize and detect new concepts without the 
benefit of training material. 
 
 

The three algorithms we investigated were: 
• K-Means, a standard statistical clustering 

technique. 
• AGS –Associated Grounded Semantics as 

described in the related paper by John Byrnes of 
Fair Isaac that appears in this conference.  

• Order – ratio of top two order statistics for the 
document score vector 

 
Due to the proprietary nature of these algorithms, we are 
unable to provide detailed descriptions of them in this 
paper.   
 
Two Parts of the Experiment 
There were to parts of the experiment.  In the part each of 
the algorithms was trained using sample data from seven 
groups of the eleven groups.  The algorithms were then 
applied to the remainder the corpus that contained 
postings from the seven selected groups and posting from 
the four other groups.  Then experimental runs were done 
where the amount of “chaff,” e.g. postings from 
talk.origins, was varied from 0% to 90%.  The optimal 
performance for these runs would be if the transform 
correctly labeled every posting from the seven groups 
with the appropriate label and labeled posting from the 
five groups that it not trained on as “chaff.” 
 
The second part of the experiment was intended to test the 
transform’s ability to self organize.  Without the benefit 
of any training data, the transforms were compared on 
their ability to discover clusters in the corpus.  The ideal 
performance in this case would be if the transform 
identified 12 cluster corresponding to the 12 groups. 

6. ANALYSIS OF RESULTS 
 
We analyzed the results from the first part of the 
experiment in two ways.  First, we compared the three 
transform algorithms using a confusion matrix.  This 
visual display, showing in Figure 11, compares the three 
algorithms on their ability to classify posting transforms.  
The figure shows the results for the run with 90% chaff 
where 33% of the corpus was used in the training set.  
This is the most difficult case.  Figure 11 shows all three 
of the confusion matrices.   The ideal performance would 
be if each matrix were diagonal for the first seven 
categories corresponding to the training data and if all of 
the documents for the remaining five groups assigned to 
the last category.   The AGS algorithm approaches ideal 
performance.  It correctly classifies essentially all of the 
postings for the groups that it was trained on and 
correctly assigns most of the other postings to the chaff 
group.  Its precision was 95% meaning that it out of 20 
documents assigned to a category 19 were in the correct 
category and recall rate was 62% meaning that it found 
62% of the labeled documents. 
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Finding Known Content
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Figure 11 Detecting Known Content. 

 
Figure 12 shows the ROC curves for the AGS run 
described above.  ROC curves show the ratio type 1 to 
type 2 errors.  These ROC curves are properly shaped, 
indicated that the algorithm worked remarkably well. 
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Figure 12 ROC Curves for AGS. 

 
For the second part of the experiment that involved the 
ability to self-organize without out training, we use an 
extension of the confusion matrix to show the 
performance of the algorithms.   Figure 13 shows the 
results from a sample run where the algorithm identified 
thirty clusters.  Each of the thirty clusters is shown in 
descending order as the rows in the matrix display.  The 
columns show the number of documents from that 
particular group in the cluster and the horizontal bar 
charts along the right show the same information 
graphically.  The bars in the bar chart are stacked and 
color encoded to show the number of postings from each 
of the 12 groups.  Thus an ideal cluster would consist of 
documents from a single group and would be represented 
as a “pure” color in the bar chart.  As the figure shows, 
the algorithm was only somewhat successful at 

discovering clusters.  It discovered several clusters that 
were cleanly from a single category but also identified 
several other clusters that were composed of a mixture of 
documents from various groups.   
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Figure 13 Detecting Unknown Content. 

7. DISCUSSION AND SUMMARY  
We have described a fundamentally new approach for 
analyzing massive amounts of data in heterogeneous 
information streams that that has the potential to 
overcome many of the problems with current approaches. 
The new idea, enabled by hardware-accelerated 
computational processing engines, is to process and re-
process real-time streams of information that have been 
transformed into self-organized concepts.  To explore this 
idea we have developed an experimental testbed that is 
performs semantic computations on documents at very 
high rates.  We applied our testbed to analyze postings to 
twelve Google groups using chaff and various subsets of 
our corpus as training data.  We explored three different 
mathematical transformation algorithms.   

Our results are extremely promising.  When training data 
was available, the algorithms successfully classified 
postings to the correct Google groups with remarkable 
precision.  Without training data, the algorithms 
successfully identified some, but not all, of the clusters.  
Our results support overall hypothesis that self-organizing 
transformation have potential to enable a totally new and 
fundamentally better approach for analyzing information 
streams.  
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