
 1

Transformation Algorithms for Data Streams123

Stephen G. Eick
SSS Research, Inc.

650 Warrenville Road,
Suite 100A

Lisle, IL 60532
eick@sss-research.com

John W. Lockwood, Ron Loui, James Moscola,
Chip Kastner, Andrew Levine, Mike Attig,

Applied Research Laboratory
Washington University in St Louis

1 Brookings Drive, Campus Box 1045,
St. Louis, MO 63130

lockwood@arl.wustl.edu

Doyle J. Weishar
SAIC Advanced Systems &

Concepts Division
3811 N. Fairfax Drive Suite 850

Arlington, VA 22203
weishard@saic.com

1 0-7803-8870-4/05/$20.00© 2005 IEEE
2 IEEEAC paper #1633, Version 5, Updated December 5, 2004
3 Research at Washington University was supported through a sub-contract with Global Velocity. John Lockwood has served as a consultant for Global
Velocity and has equity in that company.

Abstract—Next generation data processing systems must
deal with very high data ingest rates and massive volumes
of data. Such conditions are typically encountered in the
Intelligence Community (IC) where analysts must search
through huge volumes of data in order to gather evidence
to support or refute their hypotheses. Their effort is made
all the more difficult given that the data appears as
unstructured text that is written in multiple languages
using characters that have different encodings. Human
Analysts have not been able to keep pace with reading the
data and a large amount of data is discarded even though
it might contain key information. The goal of our project
is to assess the feasibility of incrementally replacing
humans with automation in key areas of information
processing. These areas include document ingest, content
categorization, language translation, and context-and-
temporally-based information retrieval.

Mathematical transformation algorithms, when
implemented in rapidly reconfigurable hardware, offer the
potential to continuously (re)process and (re)interpret
extremely high volumes of multi-lingual, unstructured
text data. These technologies can automatically elicit the
semantics of streaming input data, organize the data by
concept (regardless of language), and associate related
concepts in order to parameterize models. To test that
hypothesis, we are building an experimentation testbed
that enables the rapid implementation of semantic
processing algorithms in hardware. The system includes
a high-performance infrastructure that includes hardware-
a accelerated content processing platform; mass storage to
hold training data, test data, and experiment scenarios;
and tools for analysis and visualization of the data.

In our first use of the testbed, we performed an

experiment where we implemented three transformation
algorithms using FPX hardware platforms to perform
semantic processing on document streams. Our platform
uses Field-programmable Port Extender (FPX) modules
developed at Washington University in Saint Louis [3].

This paper describes our approach to building the
experimental hardware platform components, discusses
the major features of the circuit designs, overviews our
first experiment, and offers a detailed description of the
results, which are promising.

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. APPROACH TO STREAMING DATA PROCESSING2
3. TESTBED EXPERIMENTS4
4. DESIGN OF THE HARDWARE PLATFORM..........4
5. DESCRIPTION OF THE EXPERIMENT8
6. ANALYSIS OF RESULTS8
7. DISCUSSION AND SUMMARY9
8. REFERENCES ...9
9. BIOGRAPHIES ..10

1. INTRODUCTION
In the Intelligence Community (IC) analysts must search
through huge volumes of data in order to gather evidence
to support or refute their hypotheses. Their effort is made
all the more difficult given that the data appears as
unstructured text that is written in multiple languages
using characters that have different encodings. Data
processing systems must deal with massive volumes of
data and ingest content at very high rates. The problem is
that existing approaches to analyze and process data have

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:43:35 UTC from IEEE Xplore. Restrictions apply.

 2

not keep pace with the increasing volumes of data. Large
volumes of data are discarded even though they might
contain useful information. We explored a new approach
for analyzing and organizing intelligence data that
provides for categorizing and translating the content of
high speed data streams.

Our approach uses mathematical transformation
algorithms implemented in reconfigurable hardware to
continuously (re)process and (re)interpret high volumes
of multi-lingual unstructured text data. The system can
automatically elicit the semantics of streaming input data,
organize the data by concept (regardless of language), and
associate concepts with similar concepts needed to
parameterize text processing models. To evaluate the
potential of this system, we are building an experimental
testbed that enables rapid implementation of data
processing algorithms in hardware. The system provides
a high-performance infrastructure consisting of a
hardware-accelerated content processing platform; mass
storage device that holds training data and experimental
scenarios; and tools for analysis and visualization of the
data.

In our first use of the testbed, we performed an
experiment where we implemented circuits to perform
three transformation algorithms in hardware. Together,
they provided statistical analysis on the semantic content
in document streams flowing through a network. Our
platform uses the Field-programmable Port Extender
(FPX) modules developed at Washington University in
Saint Louis. Each FPX contains two large FPGAs –
called the Reconfigurable Application Device (RAD) and
the other called the Network Interface Device (NID) [3].
Multiple RAD circuits implemented the semantic
processing circuits to perform the “bag of words” style
text analysis. NID circuits were used to route data
through the system at a bandwidth of 2.4 Gigabit/second.
 We used this platform to implement our transforms and
performed an experiment. The first part of this paper
describes our approach to building the experimental
hardware platform components including the major
aspects of the circuit design and integration.

This remainder of this paper is devoted to an overview of
our first experiment and a detailed description of the
results, which are promising. We tested the performance
of our transforms and hardware platform by analyzing
postings to 12 Google groups. The postings were divided
into seven known categories, four unknown categories,
and a large “chaff” category that we treated as noise. We
then compared the transforms on their ability to discover
known categories when trained and on their ability to
discover unknown categories without training in the
presence of high and low noise levels. Our results are
promising. For the known categories, all of the
transforms were successful in identifying and organizing

documents into known categories. For the unknown
categories, two of the transforms algorithms successfully
identified some unknown but pure categories. This
second case is particularly important as tests the ability of
our transforms self-organize historical data when new
issues arise.

2. A NEW APPROACH TO STREAMING
DATA PROCESSING

Innovative mathematical transformation algorithms
implemented in software have shown promise for
automatically understanding the content of documents [1,
2, 3, 4, 5, 6]. Similarities between content from multiple
sources can be computed, but computation can be very
expensive -- O(n3) in some cases, where n is the number
of documents that contain information. The high
computational time limits the amount of information that
can be processed. To understand social indicators which
predict hostility and conflict before it happens, massive
amounts of data must be ingested in order to gain a
ground truth and to determine how the information is
relevant in multiple contexts.

Development of a testbed that can perform transform
algorithms in high-speed, reconfigurable hardware
enables several key innovations. First, it allows for the
real-time management and processing of information.
Live data can be processed in real-time as it arrives. Data
can also be re-processed as new contexts emerge. Two
methods for processing data flows are described below.

Figure 1. A New Approach to Information

Management

“Track before Detect” Information Management
Today’s processing flow involves the detection of a
context, then the tracking of information that relates to
that concept. Specifically, the “detect and track” scheme
can be described as:

1. Filter all information being gathered and save
only the information that is germane to the
immediate problem.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:43:35 UTC from IEEE Xplore. Restrictions apply.

 3

2. Relate atomic facts in the data, including the
names of people, places, things, and the
relationships between them.

3. Process the results with queries built to uncover
“gold nuggets” of useful information.

4. Track and report changes in the status of the
information.

As shown in Figure 1, the new processing flow inverts
the mechanism used by today’s flow. Using the new
flow, the process becomes:

1. Catalog and save all information being gathered
based upon atomic facts in the data.

2. Populate many parallel hypotheses (concepts)
with the facts and data.

3. Use a machine to detect when a hypothesis has
sufficient supporting facts (relevance) to warrant
evaluation and reinterpretation of data.

4. Aggregate evidence for the hypotheses, and
report any changes that emerge.

5. Adapt and refine concepts when indicated that a
concept is either too broad or too specific.

Future information processing systems must provide a
large amount of cognitive support to the analyst about all
the data that has been used in all on-going or past
analyses. In other words, the system needs to be able to
keep track of the original data, the relationships of the
data to other information, and the reason why it was
considered important at the time. Additionally, since no
analyst could possibly have “seen” all the data collected
by the system, the system also needs to supply the means
by which analysts can search for related information and
discover new associations and patterns in the vast
amounts of data.

Figure 2. Real-time concept-based streaming data

processing

A “concept-based” storage and retrieval approach enables
“track before detect” by reducing the intellectual
impedance mismatch between analysts and machines.
Developing special-purpose computing machines to
continuously (re)process and (re)interpret extremely large
volumes of unstructured multi-lingual text data makes this
possible. And, the ability to process massive amounts of

information quickly is the basis of our second innovation:

Stream data in real-time into machines that self-
organize concepts from input semantics
The basis for this innovation is that as data are streamed
into the system, they are transformed by high-speed
semantic processing circuits into points in multi-
dimensional space, as shown in Figure 2 (above).
Documents containing similar information – that is, those
that relate to similar concepts, will tend to cluster into
similar regions of the multi-dimensional space. A cluster
region, defined as a set of points within a set distance
from the centroid of the cluster, defines a concept. This
concept, in turn, is used as a basis to store and receive
documents. Clustering self-organizes the data.

By attaching the concept storage space to a distributed
data network, automated servers can rapidly retrieve data
that had been collected from multiple sources and score
how their position in the multiple-dimensional concept
space relates to a new hypothesis. Scoring circuits, also
implemented as high-speed computing machines in
reconfigurable hardware, can rapidly scan through vast
amounts of data to determine what information is relevant
to a new concept.

The methodology described above allows us to not only
organize data by concept, but also to continuously look
through data and associate it with existing or newly
formed hypotheses. Since hypotheses can be thought of
as being comprised of combinations of concepts, we can
realize yet another innovation. That is:

Continuously reprocess and reinterpret data to update
and score in real-time thousands of hypotheses

Figure 3. Real-time hypothesis processing

This final innovation will assist analysts to obtain
evidence of when social indicators emerge. These data
can come from various sources that include the Internet,
intelligence gathering agencies, and public news feeds, as
shown in Figure 3. The text is instantly processed for
semantic meaning, related contents are grouped together,
and multiple hypothesis servers process the data in
parallel to find new concepts and topics that emerge.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:43:35 UTC from IEEE Xplore. Restrictions apply.

 4

Because data are constantly being processed, hypothesis
servers continually aggregate weak information in
support for, or rejection of, both new and ongoing
concepts. Once a hypothesis gains sufficient support,
action can be taken.

3. TESTBED EXPERIMENTS
The overall approach for conducting experiments is
shown in Figure 4. A blend of high-speed network
devices and reconfigurable hardware is used to rapidly
ingest and process data, while software is used to control
and manage clusters. Data is received over a network as
text or HTML documents carried over standard
Transmission Control Protocol / Internet Protocol
(TCP/IP) packets. A TCP processor decodes the packets
that contain the document in one or more TCP/IP input
flows. Every word (baseword) in the document is
analyzed for its semantic meaning. All of the words in
each document are then counted to determine their
frequencies of occurrence. A document vector is then
generated which characterizes the content of the
document. This document vector is then scored against a
set of vectors that represent known or emerging concepts.
Thresholds are used to determine if content can be
classified as an existing concept or if a new cluster should
be formed.

Figure 4. Testbed Enables Real-Time, Semantic

Classification of Content

The testbed enables computationally intensive semantic
processing functions to be performed in real-time. Field
Programmable Gate Arrays (FPGAs) are used to perform
hardware-accelerated processing of the data at all of the
levels described above. By using FPGAs, all parts of the
system can be dynamically reconfigured to perform new
algorithms for data processing, content classification,
and/or concept clustering. Massive volumes of real data
can be streamed through the system. Measurements can
be made of the system’s precision, recall, throughput, and
latency.

The testbed provides a modular environment where
different hardware and software components can be used

to process data. New software can be used by
downloading programs into the compute servers in the
testbed. New hardware circuits can be tested by
dynamically reconfiguring one or more of the FPGAs in
the testbed. A variety of different mechanisms,
implemented in software and/or hardware, can be used to
scan, process, count, score, and cluster documents. Well-
defined XML interfaces provide a common interface
between computational modules so that most of the
infrastructure can be reused in different experiments.

4. DESIGN OF THE EXPERIMENT
HARDWARE PLATFORM

Our first experimental hardware platform has been
prototyped and uses reconfigurable hardware to rapidly
process content in FPGA hardware. This system uses
Field-programmable Port Extender (FPX) modules
developed at Washington University in Saint Louis, to
perform several layers of data processing functions in
hardware. Multiple FPX modules have been integrated
into a Global Velocity GVS-1000 chassis. A photograph
of an FPX module and the GVS-1000 chassis is shown
below.

FPX Photo

NID (FPGA)

SRAM Memory

2.5 Gigabit
Network Interface

RAD (FPGA)

FPX

SDRAM Memory
(backside)

GVS-1000

FPX Photo

NID (FPGA)

SRAM Memory

2.5 Gigabit
Network Interface

RAD (FPGA)

FPX

SDRAM Memory
(backside)

GVS-1000
Figure 5. Field-Programmable Port Extender (FPX)
Modules Mount in GVS-1000 System below Gigabit

Ethernet or OC48 Line Cards

Each FPX contains two large FPGAs – called the
Reconfigurable Application Device (RAD) and the
Network Interface Device (NID). In addition to the
FPGAs, each FPX cards includes two parallel banks of
SRAM and two parallel banks of SDRAM.
Reconfigurable hardware modules are deployed using
logic within the vast resources of a Xilinx Virtex
XCV2000E FPGA circuit that implement the RAD.

The RAD circuits on the FPX have been used to
implement the TCP processor, Baseword module, Count
module, Score module, and a Report module. All of
these circuits have all been implemented as modular
hardware components that make use of parallel finite state
machines seas of combinatorial logic. High-speed
network interfaces allow the FPX to communicate other
modules in the system and with other hardware and
software outside of the system using standard Internet
Protocol (IP) datagrams. The detailed configuration of a
GVS1000 system that performs semantic processing of
TCP/IP traffic passing over a network is shown in Figure
6. For this circuit, five FPX cards were operated in

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:43:35 UTC from IEEE Xplore. Restrictions apply.

 5

parallel in order to process content quickly.

Figure 6. Stacks of FPX Modules fit into a GVS-1000

The FPX cards have connectors that allow them to be
stacked on top of each other. By stacking cards, data can
be processed as streams that flow through multiple
modules. Each module transforms the data in a way that
the output from one card provides the input for next card
below. A photograph that shows how five FPX cards
were stacked to implement the semantic processing
system is shown in Figure 7.

Figure 7. FPX Modules stacked to process stream

with multiple modules

TCP/IP Processing
Over 85% of all traffic on the Internet today uses the
TCP/IP protocol. TCP is a stream-oriented protocol
providing guaranteed delivery and ordered byte flow
services. A vast number of end systems communicate
over the Internet. Traffic is concentrated to flow over a
relatively small number of routers which forward traffic
through the core of the Internet. Currently, Internet
backbones operate over communication links ranging in
speed from OC-3 (155 Mbps) to OC-768 (40 Gbps) rates.

Processing of TCP data flows at a location in the middle
of the network is generally considered to be extremely
difficult. Along the way, packets can be dropped,
duplicated and re-ordered. Packet sequences observed
within the interior of the network can be different from

packets received and processed at the connection
endpoints [9].

The TCP processor which is used in this testbed enables
complex network services to operate at gigabit speeds by
processing TCP stream data directly in hardware. The
TCP processor tracks up to 8 million bidirectional TCP
flows on an OC-48 (2.5 Gbps) network link. Network
data packets are annotated with additional control signals
which provide information about which data bytes
correspond to the IP header, the TCP header, and the TCP
payload section. There are also signals that indicate which
TCP data bytes are parts of a consistent stream of data
and which bytes should be ignored because they are
retransmissions. Signals which indicate the Start of Flow
(SOF) and End of Flow (EOF) are included along with a
unique flow identifier so that the client can independently
manage per-flow context [9].

Word Mapping
The current hardware design provides for the
representation of documents and document-prototypes as
high-dimension feature vectors. A Word Mapping Table
(WMT) is used to map input from a universe of 1 million
words into one of 4000 dimensions. The WMT maps the
hash of an input word to one of 1 million entries in a
lookup table. Each entry in the lookup table can then
remap the word into one of the 4000 dimensions based on
the semantics of the word. Three approaches have thus
far been explored to perform automatic, semi-automatic,
and automatic selection of features used to create the
WMT.

Dictionary-based Word Mapping
In the first approach, knowledge about the language itself
was used to populate the WMT. Words in a dictionary
were first assigned to a large number of dimensions, and
then dimensions were collapsed wherever a synonymous
relationship was noted. The dictionary of words was
generated using a hybrid of tools, scripts, and (in some
cases) human input. Automated scripts were developed
that applied stemming rules and searched words for
common prefix and suffix extensions to quickly populate
entries in the WMT with groups of words that had similar
meaning.

In one experiment, over 27,000 words, including proper
nouns, were collapsed to 6,414 dimensions. Further
reduction was used to map the table into 4000
dimensions. Words which were not in the dictionary
were hashed to any one of the 4000 dimensions.

To understand the desired content of the Word Mapping
Table as shown in Figure 8 below, consider how two
dimensions in the table could be populated with words
that represent the meanings of explosives and rockets.
There are several specific names for explosives, such as
“nitroglycerine”, “gelamex”, “dynamite”, and their

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:43:35 UTC from IEEE Xplore. Restrictions apply.

 6

equivalents in Arabic, Greek, and other languages of
interest. Each of these input words will have a hash
applied that maps it to any one of a million locations. For
example, given some hash function, H, it would be
possible that H(“nitroglycerine”)=101,203 and that
H(“gelamex”)=672,101. Each of the possible resulting
hash values is used to index an entry in the Word
Mapping Table. The million-entry WMT is then
populated with pointers that remap the input word to a
common baseword. For example, if the baseword for
explosive has been mapped to dimension number 1033,
then:

WMT(H(“nitroglycerine”))=WMT(101,203)=1033, and
WMT(H(“gelamex”))=WMT(672,101)=1033

Likewise, if rockets are mapped to dimension 2801, then:

WMT(H("Nassar"))=2801, and
WMT(H(“Qassam”))=2801

Thus processing of different words with similar meanings
is made possible. A graphical view of the function of the
word mapping table is shown below. The Word Mapping
Table itself is described to the system in a file with a
XML format.

H(“ ”)

H(“dynamite”)

H(“nitroglycerine”)
= 101,203

H(“gelamex”)
= 672,101

H(“Qassam”)

H(“Nassar”)

Input =
Hash of

words that
may appear

in a document

Range = 0 .. 2^20 – 1
{ 0 .. 1,048,575 }

H(explosive)
= 1033

H(rocket)
= 2801

H(“irrelevant”)

0

3999

0

1,048,575

Word Mapping Table

H(“ ”)

H(“dynamite”)

H(“nitroglycerine”)
= 101,203

H(“gelamex”)
= 672,101

H(“Qassam”)

H(“Nassar”)

Input =
Hash of

words that
may appear

in a document

Range = 0 .. 2^20 – 1
{ 0 .. 1,048,575 }

H(explosive)
= 1033

H(rocket)
= 2801

H(“irrelevant”)

0

3999

0

1,048,575

Word Mapping Table

Figure 8. Word Mapping Table (WMT) Allows Hash
of Each of 1 Million Input Words to be Mapped into

any Output Value in a 4000-Dimensional Vector

Word Mapping with Pair-wise Differentiation
The second method, explored by Fair Isaac, starts with an
m-document training set partitioned into k known
categories. The most powerful discriminators for
pairwise differentiation are used to generate data in the
known categories.

This method bypassed entirely the question of what
words were in the lexicon and what words were not. The
hardware design represented all words using a million-
wide hash. Each of the million buckets is mapped to one
of the unit vectors in the 4000-dimensional space. This
mapping could be specified by the feature-selection
algorithm or be reprogrammed as needed.

There are downsides to the algorithm. Even with one
million unique words, is not possible to encode all of the
unique four-letter sequences that can occur with a 26-
letter alphabet. If a lexicon were to have few collisions
due to nuisance strings, or quasi-words, extracted from
binary documents (binary noise), significant collisions
could occur. The mapping from the million-wide
representation to the 4000-dimensional representation
would preserve any ambiguity about what string actually
hashed to the original million-wide bucket.

To avoid populating the table with quasi-words that have
little value, computation is performed to determine the
actual words that contribute most to the classification and
clustering decisions. This computation requires
significant computation and the algorithm’s running time
is inherently nondeterministic. An unfortunate side effect
of this optimization is that most words unseen in the
training set are not assigned representation in the 4000-
dimension feature vector for a document. Thus,
clustering and category drift could only be based on those
hash values that had proved useful in separating the
training set's categories.

Word Mapping with Information Retrieval
The third method was based on ideas from information
retrieval (IR). Documents in each training set category
were studied for the frequency of occurrence of words.
The most used words, as defined as those that occur more
than 0.1% of the time, are excluded from the table
because they typically represent common nouns, verbs,
and prepositions that add little meaning to the document.
Excluding those, the next most frequent 100 and next
most frequent 500 words are assigned to dimensions in
the WMT.

Use of duplicated dimensions is avoided for the most
frequent 100 words. Likewise, use of duplicate
dimensions is minimized for the next most frequent 500
frequent words. 2000 of the dimensions are reserved for
words that were not seen in the training set (unknown
terms). A background inverse term frequency (ITF) and
inverse document frequency are used (IDF) for weighting
dimensions in dot products between document vectors.

Implementation of the Word Mapping Circuit
A block diagram of the word mapping circuit, as it was
implemented in FPGA logic is shown below. The circuit
reads data input from the TCP/IP wrappers. The word
parser includes multiple modules to process text in
different languages. With English ASCII text, for
example, words are processed as groups of 8-bit
characters separated by white space. With Arabic and
Greek text, however, the circuit uses modules that process
16 bits at a time to decode sequences of UTF-16
characters. For languages that have a notion of upper and
lower case characters, the circuit can normalize the case

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:43:35 UTC from IEEE Xplore. Restrictions apply.

 7

so that both variations of the same word are treated the
same. The policy can be altered by reconfiguration of the
FPGA hardware.

TCP Data

Flow ID

WMT
Updates

Network
Data
From
TCP

Wrappers

Updates
From

Control
Host

Word
Parser

ASCII
English

Win
1253/56

UTF-16
Greek

UTF-16
Arabic

UTF-16
English

TCP Input

Word Mapping
Table (WMT)

(1 Million
entries)

Commands

Per-Flow Context
State Store

(8 Million flows)

Word
Clustering

Table
Loader

S
R

A
M

Interface

SDRAM
Interface

Frame Builder
Stream of Count
Vector Pointers

Hash
Generator

Case
Normalize

[Optional]
TCP Data

Flow ID

WMT
Updates

Network
Data
From
TCP

Wrappers

Updates
From

Control
Host

Word
Parser

ASCII
English

Win
1253/56

UTF-16
Greek

UTF-16
Arabic

UTF-16
English

TCP Input

Word Mapping
Table (WMT)

(1 Million
entries)

Commands

Per-Flow Context
State Store

(8 Million flows)

Word
Clustering

Table
Loader

S
R

A
M

Interface

SDRAM
Interface

Frame Builder
Stream of Count
Vector Pointers

Hash
Generator

Case
Normalize

[Optional]

Figure 9. Block diagram of the word mapping circuit,

as it was implemented in FGPA logic

Once a word has been identified, a hash is computed
using the word clustering module. This module accesses
the WMT, which itself is implemented in off-chip Static
Random Access Memory (SRAM). The values in the
WMT each return a value in the range of {0..3999} and
are used to identify the root meaning of the word.

It is not always the case that an input packet will contain
an entire word. It is possible that a word will be split
between packets when the data stream is segmented for
transmission over a TCP/IP network. The circuit supports
identification of strings that cross packet boundaries.
Synchronous Dynamic Random Access Memory
(SDRAM) is used to store the state of each traffic flow’s
context. Words segmented across multiple, interleaved
packets can still be identified in a TCP/IP steam by
tracking the last K bytes of each stream in the large, off-
chip SDRAM. The existing system tracks the last K=32
bytes of data per stream.

Word Frequency
Word frequencies are counted for every active flow in the
system for each dimension. For each traffic flow, the
count circuit computes the sum of the basewords that
occur in each dimension of the document vector. To
support 4000-dimensional vectors that are used by the
baseword circuit, the count circuit maintains the state of
4000 parallel counters.

A challenge for determining the word frequency for data
that appears on a TCP/IP network is that packets from
different flows can be interleaved as they pass through the
network. Count arrays resulting from flows that are
interleaved will produce count array packets that are
interleaved. Data can appear when it arrives to the count
circuit from a TCP/IP network. Interleaved packets
generate interleaved basewords. Thus, basewords
resulting from the content in the flows can be interleaved.

As with the baseword circuit, the count circuit uses off-
chip SDRAM to maintain multiple contexts that track the
state of each flow. The count circuit supports 524,288

(512k) flows that each requires storage of 4000 counters.
 Each counter is represented with a 4-bit (1/2-byte) value.
 A total of 512K*2K = 1 Gbyte of memory is used to
store the state of all flows.

Scoring
Once a flow has ended, the resulting document vector is
compared against a set of concept vectors. In general, the
FPGA could be programmed to compute a score using
any desired Support Vector Machine (SVM) function.
For the circuit implemented in the existing testbed, a dot
product is computed of the document vector against a set
stored concept vectors.

Coefficients can be dynamically loaded into the score
table. This score table can be formatted in one of two
ways. One FPGA circuit was implemented that supports
4-bit coefficients for a table of 30 concepts. The other
FPGA circuit that was implemented supports 8-bit
coefficients for a table that supports 15 concepts. Both
circuits operate on the 4000-dimension vector.

A high throughput of processing is achieved because the
computation of the multiplication occurs in parallel for
each concept. Count values that define the incoming
document vector arrive at a rate of 8 elements per clock
cycle. For the scoring circuit that supports 30 concepts,
the system performs 8*30=240 parallel multiplications
per clock cycle. Over the duration of the 4000-element
vector, the FPGA performs a total of 4000*30=120,000
multiplications per document. Given that the system can
score 150,000 documents per second, the parallel
hardware performs 120,000*150,000 = 18 Billion
multiplications per second.

Incoming
document vector

Parallel computation of
distance between document vector

with each known concept vector

…

Σ (Documenti * Concepti,k)
(dot product)

Σ Σ Σ Σ Σ Σ ΣΣ Σ
i=3999

i=0

Outgoing
score array
for k=0..29

concept vectors

Incoming
document vector

Parallel computation of
distance between document vector

with each known concept vector

…

Σ (Documenti * Concepti,k)
(dot product)

Σ Σ Σ Σ Σ Σ ΣΣ Σ
i=3999

i=0

Outgoing
score array
for k=0..29

concept vectors

Figure 10. Hardware circuits accelerate the
classification of documents by computing the least-

squares distance (dot product) between an input
vector and representative content. At times of peak

processing, the circuit performs 18 Billion
multiplications per second.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:43:35 UTC from IEEE Xplore. Restrictions apply.

 8

5. DESCRIPTION OF THE EXPERIMENT

A set of newsgroups were selected for analysis. Scripts
were written to automatically download content from
Google’s newsgroup area. A corpus was collected that
included 2000 messages from the Internet newsgroups:

• alt.sports.baseball.stl_cardinals
• comp.ai.neural_nets
• comp.programming.threads
• humanities.musics.composers.wagner
• misc.consumers.frugal_living
• misc.writing.moderated
• rec.equestrian
• rec.martial_arts.moderated
• sci.archeology.moderated
• sci.logic
• soc.libraries.talk

The data was human analyzed for content and off-topic
messages were removed. Headers to the files were
stripped so that the machine learning process would not
have access to the newsgroup identifier.

The training sets were generated through random
selection to avoid training only on data that happened to
consist of a few large threads. Chaff was downloaded
from another newsgroup talk.origins. That newsgroup
has a large amount of off-topic content and flame
messages and threads that were largely non-cohesive.

Tests were run on the corpus with different amounts of
training data and chaff. The first set of experiments used
no chaff and a training set which consisted of {1%, 33%,
and 50%} of the files. The second set of tests added
random data so that 10% of the total files were chaff. The
experiment was again run using {1%, 33%, and 50%} of
the data for training. The third set of tests added more
random data so that that 90% of the files in the corpus
were chaff. The experiment was run again using {33%
and 50%} of the data for training

Mathematical Transformation Algorithms
In the experiment, we evaluated the three mathematical
transform algorithms in terms of their ability to detect
known categories when provided with training data on
these categories and on their ability to discover unknown
categories without training. The first case is intended to
model the situation where the transform organizes
material related to a known context. In many ways it
parallels the traditional form of analysis where
information related to a known concept is tracked and
organized. The second case investigates if transforms are
able to self organize and detect new concepts without the
benefit of training material.

The three algorithms we investigated were:
• K-Means, a standard statistical clustering

technique.
• AGS –Associated Grounded Semantics as

described in the related paper by John Byrnes of
Fair Isaac that appears in this conference.

• Order – ratio of top two order statistics for the
document score vector

Due to the proprietary nature of these algorithms, we are
unable to provide detailed descriptions of them in this
paper.

Two Parts of the Experiment
There were to parts of the experiment. In the part each of
the algorithms was trained using sample data from seven
groups of the eleven groups. The algorithms were then
applied to the remainder the corpus that contained
postings from the seven selected groups and posting from
the four other groups. Then experimental runs were done
where the amount of “chaff,” e.g. postings from
talk.origins, was varied from 0% to 90%. The optimal
performance for these runs would be if the transform
correctly labeled every posting from the seven groups
with the appropriate label and labeled posting from the
five groups that it not trained on as “chaff.”

The second part of the experiment was intended to test the
transform’s ability to self organize. Without the benefit
of any training data, the transforms were compared on
their ability to discover clusters in the corpus. The ideal
performance in this case would be if the transform
identified 12 cluster corresponding to the 12 groups.

6. ANALYSIS OF RESULTS

We analyzed the results from the first part of the
experiment in two ways. First, we compared the three
transform algorithms using a confusion matrix. This
visual display, showing in Figure 11, compares the three
algorithms on their ability to classify posting transforms.
The figure shows the results for the run with 90% chaff
where 33% of the corpus was used in the training set.
This is the most difficult case. Figure 11 shows all three
of the confusion matrices. The ideal performance would
be if each matrix were diagonal for the first seven
categories corresponding to the training data and if all of
the documents for the remaining five groups assigned to
the last category. The AGS algorithm approaches ideal
performance. It correctly classifies essentially all of the
postings for the groups that it was trained on and
correctly assigns most of the other postings to the chaff
group. Its precision was 95% meaning that it out of 20
documents assigned to a category 19 were in the correct
category and recall rate was 62% meaning that it found
62% of the labeled documents.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:43:35 UTC from IEEE Xplore. Restrictions apply.

 9

Finding Known Content
Hard Run: 90% Chaff (33% Train)

Order Statistic
Precision: 6%
Recall: 55%

K-Means
Precision: 4%
Recall: 73%

AGS
Precision: 95%

Recall: 62%

tru
e

la
be

ls

150 2 2 3 7 4 10

10 57 12 14 3 2 48

5 8 139 2 4 7 2 39

1 1 102 3 3 21

5 3 7 7 65 2 8 50

9 2 4 8 7 79 7 56

16 6 6 9 14 3 65 92

22 6 7 8 11 6 8 90

26 9 23 54 18 13 13 136

22 5 19 31 1 8 11 69

6 11 28 5 7 8 4 44

1125 831 1963 2683 1375 945 507 9570

alt.sports

comp.ai

comp.programming

humanities.musics

misc.consumers

misc.writing

rec.equestrian

rec.martial_arts

sci.archeology

sci.logic

soc.libraries

CHAFF

alt.sports
comp.ai

comp.programming
humanities.musics

misc.consumers
misc.writing

rec.equestrian
rejects

84 75 3 16

85 1 2 33 19 6

1 133 39 23 10

1 1 98 23 6 2

140 1 6

16 154 2

40 1 170

17 17 2 81 11 30

23 9 145 64 51

2 22 1 83 37 21

8 1 49 45 10

188 8876 128 205 5701 2118 1800 3

alt.sports
comp.ai

comp.programming
humanities.musics

misc.consumers
misc.writing

rec.equestrian
rejects

149 29

81 65

173 33

96 35

87 60

67 105

97 114

1 1 5 151

292

1 165

1 112

9 1 19 18988

alt.sports
comp.ai

comp.programming
humanities.musics

misc.consumers
misc.writing

rec.equestrian
rejects

Figure 11 Detecting Known Content.

Figure 12 shows the ROC curves for the AGS run
described above. ROC curves show the ratio type 1 to
type 2 errors. These ROC curves are properly shaped,
indicated that the algorithm worked remarkably well.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

alt.sports

x

y

50% Train
33% train

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

comp.ai

x

y

50% Train
33% train

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

comp.programming

x

y

50% Train
33% train

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

humanities.musics

x

y

50% Train
33% train

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

misc.consumers

x

y

50% Train
33% train

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

misc.writing

x

y

50% Train
33% train

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

rec.equestrian

y

50% Train
33% train

Figure 12 ROC Curves for AGS.

For the second part of the experiment that involved the
ability to self-organize without out training, we use an
extension of the confusion matrix to show the
performance of the algorithms. Figure 13 shows the
results from a sample run where the algorithm identified
thirty clusters. Each of the thirty clusters is shown in
descending order as the rows in the matrix display. The
columns show the number of documents from that
particular group in the cluster and the horizontal bar
charts along the right show the same information
graphically. The bars in the bar chart are stacked and
color encoded to show the number of postings from each
of the 12 groups. Thus an ideal cluster would consist of
documents from a single group and would be represented
as a “pure” color in the bar chart. As the figure shows,
the algorithm was only somewhat successful at

discovering clusters. It discovered several clusters that
were cleanly from a single category but also identified
several other clusters that were composed of a mixture of
documents from various groups.

categories

di
sc

ov
er

d
ca

te
go

ry

1 1 7
6
7
13

3 3
13
26
26

1 1 1 7
9 1 2 18 5 9 4 1 26
7 3 1 29 1 31 56 2 7 59
3 1 3 5 8 14 14 2 16
1 36 27 2 2 3 4 30 1 4

2 2 43 5 12 40 16 9
98 1 10 1

6
5 1

2 1 10 5
2 1 1 3 10 21 6 27 6 2 12 4

1 2
1 1 2 2 1 2 8 5 3
9 1 11 1 8

4 1 1 17 8 6 1 14 109 3 7 8
8 2 18 2

20
37
12

1 26
2 1 1 14

1 1 1 3 2 5 1 17 18 6 41 10

CHAFF
CHAFF
CHAFF
CHAFF
CHAFF
CHAFF
CHAFF
CHAFF
CHAFF
CHAFF
CHAFF
CHAFF
comp.ai
misc.writing
rec.equestrian

rec.martial_arts
rec.martial_arts
rec.martial_arts
rec.martial_arts
sci.archeology
sci.archeology
sci.archeology
sci.archeology
sci.logic
sci.logic
sci.logic
sci.logic
sci.logic
soc.libraries
soc.libraries

alt.sports
comp.ai

comp.programming
humanities.musics

misc.consumers
misc.writing

rec.equestrian
rec.martial_arts

sci.archeology
sci.logic

soc.libraries
CHAFF

alt.sports
com p.a i
com p.p rogram m ing
hum anit ies.m usics
m isc.consum ers
m isc.w rit ing
rec.eques tr ian
rec.m art ia l_a rts
sc i.a rcheo logy
sc i. logic
soc. libra r ies
CHAF F

Figure 13 Detecting Unknown Content.

7. DISCUSSION AND SUMMARY
We have described a fundamentally new approach for
analyzing massive amounts of data in heterogeneous
information streams that that has the potential to
overcome many of the problems with current approaches.
The new idea, enabled by hardware-accelerated
computational processing engines, is to process and re-
process real-time streams of information that have been
transformed into self-organized concepts. To explore this
idea we have developed an experimental testbed that is
performs semantic computations on documents at very
high rates. We applied our testbed to analyze postings to
twelve Google groups using chaff and various subsets of
our corpus as training data. We explored three different
mathematical transformation algorithms.

Our results are extremely promising. When training data
was available, the algorithms successfully classified
postings to the correct Google groups with remarkable
precision. Without training data, the algorithms
successfully identified some, but not all, of the clusters.
Our results support overall hypothesis that self-organizing
transformation have potential to enable a totally new and
fundamentally better approach for analyzing information
streams.

8. REFERENCES
[1] Cristianini, N. and Shawe-Taylor, J., “An Introduction
to Support Vector Machines and other kernel-base
learning methods”, Cambridge University Press, 2000.
[2] Domingos, P., “Mining High-Speed Data Streams”,
Sixth ACM SIGKDD international conference on
Knowledge Discovery and Data mining (KDD), Boston,
MA, Aug. 20-23, 2000, pp. 71-80.
[3] Lockwood, J., “Evolvable Internet Hardware
Platforms”, NASA/DoD Workshop on Evolvable
Hardware (EHW’01), Long Beach, CA, July 12-14, 2001,
pp. 271-279.
[4] Hulten, G., Spencer, L. and Domingos, P., “Mining

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:43:35 UTC from IEEE Xplore. Restrictions apply.

 10

Time-Changing Data Streams”, Sixth ACM SIGKDD
international conference on Knowledge Discovery and
Data mining (KDD), San Francisco, CA, Aug. 26-29,
2001, pp. 97-106.
[5] Vigna, G., Robertson, W., Kher, V. and Kemmerer R.,
“A Stateful Intrusion Detection System for World-Wide
Web Servers”, Proceedings of the Annual Computer
Security Applications Conference (ACSAC 2003), pages
34–43, Las Vegas, NV, December 2003.
[6] Schuehler, D. and Lockwood, J., “A Modular System
for FPGA-based TCP Flow Processing in High-Speed
Networks”, by David Schuehler, John Lockwood; 14th
International Conference on Field Programmable Logic
and Applications (FPL), Springer LNCS 3203, Antwerp,
Belgium, August 2004, pp. 301-310.
[7] Madhusudan, B. and Lockwood, J., “Design of a
System for Real-Time Worm Detection”, by 12th Annual
Proceedings of IEEE Hot Interconnects (HotI-12);
Stanford, CA, August, 2004, pp. 77-83.
[8] Dharmapurikar, S., Krishnamurthy, P., Sproull, T.,
and Lockwood, J., “Deep Packet Inspection using Parallel
Bloom Filters”, IEEE Micro, Vol. 24, No. 1, Jan 2004,
pp. 52-61.
[9] Schuehler, D., Moscola, J., and Lockwood, J.,
“Architecture for a Hardware-Based, TCP/IP Content-
Processing System”, IEEE Micro, Vol. 24, No. 1, Jan
2004, pp. 62-69.
[10] Wang, Y., Hodges, J. and Tang, B., “Classification
of Web Documents Using a Naïve Bayes Method”, IEEE
International Conference on Tools with Artificial
Intelligence, Sacramento, CA, USA, November 3-5,
2003, pp 560.
[11] Fall, C. J. and Benzineb K., “Literature survey:
Issues to be considered in the automatic classification of
patents”, World Intellectual Property Organization, Oct.
29, 2002.

9. BIOGRAPHIES
Stephen G. Eick, a fellow of the American Statistical
Association, has received 26 patents, and has won many
awards for his technology including the Bell Lab’s
President’s award and the 2000 Computer-world
Smithsonian award for key technologies that change the
way people live and work. His educational background
includes a B.A from Kalamazoo College (1980), M.A.
from the University of Wisconsin at Madison (1981), and
his Ph.D. in Statistics from the University of Minnesota
(1985). Eick’s research focuses on information
visualization: building rich visual interfaces to help users
understand complex information sets. Eick is particularly
interested in visualizing network information and in
visualizations that are related to data mining. In his
experience the most interesting visualizations are
motivated by real problems.

John W. Lockwood designs and implements networking
systems in reconfigurable hardware. Lockwood and his

research group developed the Field programmable Port
Extender (FPX) to enable rapid prototype of extensible
network modules in Field Programmable Gate Array
(FPGA) technology. He is an assistant professor in the
Department of Computer Science and Engineering at
Washington University in Saint Louis. He has published
over 50 papers in journals and technical conferences that
describe technologies for providing extensible network
services in wireless LANs and in high-speed networks.
Professor Lockwood has served as the principle
investigator on grants from the National Science
Foundation, Xilinx, Altera, Nortel Networks, Rockwell
Collins, and Boeing. He has worked in industry for AT&T
Bell Laboratories, IBM, Science Applications
International Corporation (SAIC), and the National
Center for Supercomputing Applications (NCSA). He
served as a co-founder of Global Velocity, a networking
startup company focused on high-speed data security.
Dr. Lockwood earned his MS, BS, and PhD degrees from
the Department of Electrical and Computer Engineering
at the University of Illinois. He is a member of IEEE,
ACM, Tau Beta Pi, and Eta Kappa Nu.

Ron Loui is an Associate Professor in Computer Science
and Engineering. He is the author of over seventy articles
in leading technical journals over the past two decades
including AI Journal, Cognitive Science, Computational
Intelligence, Journal of Philosophy, Journal of Symbolic
Logic, MIT Encyclopedia on Cognitive Science, AI and
Law, Theory and Decision, CACM, and ACM Computing
Surveys. He was a Stanford Sloan Fellow in 1988 and
has performed research for Digital Equipment and
Rockwell, and has consulted for Xerox and McDonnel-
Douglas. Professor Loui received his undergraduate
degree at Harvard with high honors in Applied
Mathematics: Decision and Control, 1982. He received a
joint Computer Science and Philosophy doctoral degree
from the University of Rochester, after a CS MS, in 1987.
 He is a graduate of Punahou School in Honolulu,
Hawaii.

James Moscola, Chip Kastner, Andrew Levine, Mike
Attig are graduate students that work at Washington
University in St. Louis.

Doyle Weishar is the Vice President of Advanced
Technology in the Advanced Systems and Concepts
Division of SAIC Corporation. He has over 20 years of
experience in the advanced research and development of
strategic information systems. A former DARPA Program
Manager, Dr. Weishar holds an M.S. in Computer
Science and a Ph.D. Information Technology.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:43:35 UTC from IEEE Xplore. Restrictions apply.

