
 1

Sensitivity Analysis of Gigabit Concept Mining System
Andrew Levine, Ron Loui, John W. Lockwood, Young H. Cho

Reconfigurable Network Group
Washington University in St. Louis
1 Brookings Drive, St. Louis 63130

{aal1, lockwood, young}@arl.wustl.edu, loui@cse.wustl.edu
http://www.arl.wustl.edu/arl/projects/fpx/reconfig.htm

Abstract—As described in our prior papers, we have
implemented a system that performs real-time analysis and
classification of network traffic using reconfigurable
hardware. In this paper, we consider how to optimize the
performance and make best use of the hardware resources
by simulating the effect of parameter variation. We have
devised a systematic method to determine the best
parameters for the hardware such that we do not sacrifice
the quality of the result. We applied the method to
determine how our existing system could best identify the
topics of Internet newsgroup postings as the content streams
over a Gigabit Ethernet link. 1 2

TABLE OF CONTENTS

1. INTRODUCTION..1
2. BACKGROUND..1
3. HARDWARE SEMANTIC PROCESSING....................2
4. PARAMETER MANIPULATION EXPERIMENT.........4
5. RESULT ANALYSIS...6
6. SIGNIFICANCE EVALUATION.................................8
7. CONCLUSION ...9
REFERENCES ...9
BIOGRAPHY ...10

1. INTRODUCTION

Every day, trillions of packets are transferred across
networks throughout the world. To provide security for the
users of these networks, network administrators analyze as
much content as possible. To be useful, this network traffic
must be processed in real-time to avoid accumulating a
backlog. Previously, administrators were overwhelmed by
massive volumes of data.

To enable processing of large volumes of data, we
implemented a hardware-accelerated system called the
Automated Front End (AFE) system [1,2]. This AFE
system identifies the topic and/or language of network
traffic flows as they pass over backbone links. The system

1
1 This research was sponsored by the Air Force Research Laboratory, Air
Force Materiel Command, USAF, under Contract Number MDA972-03-9-
0001. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of AFRL or the U.S.
Government.
2 1-4244-0525-4/07/$20.00 ©2007 IEEE
 IEEEAC paper #1165, Version 17, Updated: 2006:12:20

outputs scores that indicate proximity to known topics or
dialects of a language.

The AFE system is a hardware implementation of a
Machine Learning technique. Data is processed at high
speed by using Field Programmable Gate Array (FPGA)
devices. Use of the FPGA devices enable the system to
process and annotate data at Gigabit/second rates.
Parameters of the hardware were tuned to provide the best
quality of results. Using parameters that find too much data
overwhelms an analyst. Using parameters that find too little
data is also unsatisfactory because important data may be
overlooked.

Several considerations were factored into the design of the
AFE system. The AFE hardware was implemented using a
stack of 5 FPX platforms. Verification of each FPX module
enabled the incremental verification of the entire system.
Software tools were written to verify and test each module.
These tools used the same data formats used by hardware.
By standardizing the interfaces for the components of the
AFE system, multiple developers were able to contribute
components to the system. Our tools not only enabled us to
verify correct operation of the actual AFE hardware that
was implemented, but also enabled us to experiment with
different variations of the AFE system that used other
parameters.

2. BACKGROUND

Field Programmable Port Extender

The AFE system was built using the Field Programmable
Port Extender (FPX) platform, an open, reconfigurable
hardware platform developed by members of the
Reconfigurable Networking Group at Washington
University in St. Louis [5,6,7]. Hardware resources on the
FPX platform were optimized for processing of data packets
and flows passing over Gigabit/second links. The FPX
includes two FPGA devices, two banks of Static Random
Access Memory (SRAM), and two banks of Synchronous
Dynamic Random Access Memory (SDRAM). In total, the
FPX hardware can access over a Gigabyte (GB) of memory
using the four parallel memory banks. The first FPGA on
the FPX, the Network Interface Device (NID), is a Xilinx
XCV600E that routes data through the FPX platform,
dynamically reconfigures the other FPGA device, and
processes commands sent over the network. The second

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:42:42 UTC from IEEE Xplore. Restrictions apply.

 2

FPGA, the Reprogrammable Application Device, is a large
Xilinx XCV2000E FPGA device that performs
reconfigurable data processing as per the configuration of
the bitfile loaded by the NID into the RAD.

Circuits for the RAD can be implemented using any
standard Hardware Description Language (HDL). For our
work, we compiled designs written with the Very high
speed integrated circuit HDL (VHDL), synthesized circuits
using Synplicity and Xilinx Electronic Design Automation
(EDA) tools, and then downloaded bitstreams into the RAD
on the FPX.

The complete AFE system was built using a stack of five
FPX modules. Each FPX module performed a different
function. Together, all of the modules implemented a deep
pipeline for packet and flow processing.

TCP Module

Baseword

Count

Score

Reporting
Figure 1 – A stack of five Field-programmable Port
Extender (FPX) platforms built with a total of ten
FPGAs (5 RADs and 5 NIDs) implement Automated
Front End (AFE) processing Hardware.

Circuits that run on the FPX exploits parallel hardware to
achieve Gigabit/second data processing rates. The FPX
platform has been used to build dozens of high-speed
networking applications, but is especially well suited for the
task of deep packet inspection. By using hardware, rather
than software, the FPX platform can process data at rates
that far surpass conventional computing systems. A single
FPX hardware module can replace a rack full of PCs.
Unlike an Application Specific Integrated Circuit (ASIC),
the FPGA bitfiles on the FPX platforms can be dynamically
reconfigured to perform different processing tasks.

Configuration of the System

The configuration of the hardware for the AFE system is
shown in Figure 1. The system is implemented using a
stack of five FPX cards which are individually configured
to (1) analyze TCP/IP flows, (2) identify basewords that
appear in text, (3) count the frequency of the basewords, (4)
score the data to known concepts, and (5) report the score to
an external software system.

Data is received by the system cards from a Line Card (LC)
that stacks on top of the FPX modules. Two types of LCs

were built: one for OC48 and the other for Gigabit Ethernet.

A chassis holds the stack of FPX cards, the configuration is
shown in Figure 2. In this AFE system, four FPX cards are
stacked on the left side of a chassis below the LC to
reconstruct the traffic flows and process the streams of data.
The stacked FPX cards are connected together via high-
speed Utopia interfaces and data flows between cards using
virtual circuits. Physically, each FPX card is connected to
other FPX modules above and below that card. A
backplane interconnects a stack of FPX modules on the left
and right side of the chassis. A fifth FPX card (called the
NID PT) is placed on the right side of the chassis. This
module connects to a Gigabit Ethernet LC to report a
summary of each flow to an external software system. The
final output of the hardware is transmitted using standard
UDP/IP packets which are in turn received by a server that
“catches” the results.

The processing stages of the AFE system are implemented
with a deep pipeline broken down to basic functions. First,
the TCP Circuit extracts payloads from network traffic.
Second, the Base Word Circuit analyzes payloads by
identifying acceptable byte sequences and passing them
through a dimensionality reduction system called the Word
Mapping Table (WMT). Third, values are passed to the
Count Circuit which builds a representation of the document
into an array. Finally, the Score Circuit completes a dot
product with preloaded concepts represented by arrays of
values. The output of the score circuit is passed to the NID
PT which in turn writes out summaries of the flows to the
hardware Gigabit LC [1].

Figure 2 Processing Stack of FPX Cards

3. HARDWARE SEMANTIC PROCESSING

Although reconfigurable hardware can process data at high
speeds, certain considerations must be taken into account
when implementing modules with FPGAs. For example,
floating point computation is possible but it is costly in
terms of the resulting size of hardware circuits. A floating
point multiplier, for example, is four times larger than an

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:42:42 UTC from IEEE Xplore. Restrictions apply.

 3

integer multiplier. Implementing a few floating point units
is not a problem, but does not make the best use of the
hardware’s resources. For semantic processing, a large
number of features is needed to represent a document.
Therefore, a large number of multipliers would require a
large amount of hardware. Fixed-size multipliers are much
better suited for the task than a floating point unit.

Extracting Features - The Base Word Circuit

Feature extraction is performed in the Base Word Circuit.
The Base Word Circuit considers a word to be a series of
bytes that are identified as acceptable in a given sequence.
Acceptance of byte sequences is different than tokenization.
Tokenization of words is performed by searching for tokens
and segmenting sequences of bytes at those known tokens
whereas the identification of words from acceptable byte
sequences allows sequences to be built from any pattern that
adheres to acceptable values.

The AFE system can process words in different languages
by supporting characters that are either a one or two bytes
long. For the AFE system, any sequences of 3 to 16
characters can constitute an acceptable word. Sequences
that extend past 16 characters are truncated to a length of
16. For example, a long English word (using single-byte
encoding) is truncated to the shorter 16-byte string as shown
below:

antidisestablishmentarianism → antidisestablish

Minimum Word Length

The AFE system can be set to process only base words that
have a minimum length. By default, we process data with
word lengths that have a minimum of 3 characters. For our
analysis, however, we varied the minimum word lengths
from 2 to 8 characters.

After a word is identified, the AFE system hashes that word
into a 20-bit field that has a range of 0 to 1,048,575. The
Word Mapping Table (WMT) uses this 20-bit value to
index a memory location in an SRAM attached to the FPX
card. Each element in the memory holds a smaller value
which falls in the range of 0 to 3,999--the default
dimensions that we use to represent a document. This
content of the Word Mapping Table is programmable by
software. An example of how input words are hashed into a
20-bit value then mapped into a baseword in the range of 0
to 3,999 is shown in Figure 3. The output from the
Baseword module produces a list of features that appear in
the documents.

H(“ ”)

H(“dynamite”)

H(“nitroglycerine”)
= 101,203

H(“gelamex”)
= 672,101

H(“Qassam”)

H(“Nassar”)

Input =
Hash of

words that
may appear

in a document

Range = 0 .. 2^20 – 1
{ 0 .. 1,048,575 }

H(explosive)
= 1033

H(rocket)
= 2801

H(“irrelevant”)

0

3999

0

1,048,575

Word Mapping Table

H(“ ”)

H(“dynamite”)

H(“nitroglycerine”)
= 101,203

H(“gelamex”)
= 672,101

H(“Qassam”)

H(“Nassar”)

Input =
Hash of

words that
may appear

in a document

Range = 0 .. 2^20 – 1
{ 0 .. 1,048,575 }

H(explosive)
= 1033

H(rocket)
= 2801

H(“irrelevant”)

0

3999

0

1,048,575

Word Mapping Table

Figure 3 Word Mapping Table in Base Word Circuit

Dimensionality – Number of Features

In this work, we considered the effect of using fewer
dimensions to represent features. By default, the AFE
system uses 4,000 bins to represent the documents and
concept vectors. We varied the parameters to determine the
effect of using dimensions: 3,000, 2,000, 1,000, 500, and
250 dimensions.

Building Representation - The Count Circuit

The feature counting function is performed by the Count
Circuit. The Count Circuit receives a list of extracted
features and increments the appropriate counters for the
document. The circuit accumulates statistics of words that
appear in the document by tracking the counts for each
flow. The hardware uses integers to track the counts. As
one of the design considerations of the AFE system, 2
KBytes of SRAM are reserved for each vector because this
is the amount of space needed to represent 4,000 feature
vectors with 4 bit counters. When a document is finished
counting, the vector is passed down the pipeline to the
Score module.

Count Bit Resolution

The Count module in the AFE system uses an array of
saturating, finite-sized counters to track the frequency of
occurrence for each baseword. In this analysis, we consider
the effect of using fewer bits for the count of each feature.
By default, the resolution of the bins in the document’s
count arrays is nominally 4 bits allows for a range of 0 to 15
in each bin. Through analysis in this paper, we also
consider counters that use: 3 bit, 2 bit, and 1 bit resolution.

Scoring Documents - The Score Circuit

Scores are computed as a dot product computation between
a document's representation generated by the count circuit
and known concepts. The concepts are represented with the
same number of feature dimensions and either 4-bit or 8-bit
integer counters. With 4,000 dimensions, 2KB or 4KB are
needed to represent a concept depending on whether the
size of each feature is a half byte or a full byte. The Score
Circuit computes a dot product of the document against all
the loaded concepts as seen in Figure 4. When the

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:42:42 UTC from IEEE Xplore. Restrictions apply.

 4

computation is complete, the results are passed out of the
system.

Score Bit Resolution

In this work, we considered variations of the system with 8
bits or 4 bits of resolution. Hardware circuits were built
that supported both values of resolution. A tradeoff exists
with hardware because more concepts can be represented
using a smaller resolution.

Incoming
document vector

Parallel computation of
distance between document vector

with each known concept vector

…

Σ (Documenti * Concepti,k)
(dot product)

Σ Σ Σ Σ Σ Σ ΣΣ Σ
i=3999

i=0

Outgoing
score array
for k=0..29

concept vectors

Incoming
document vector

Parallel computation of
distance between document vector

with each known concept vector

…

Σ (Documenti * Concepti,k)
(dot product)

Σ Σ Σ Σ Σ Σ ΣΣ Σ
i=3999

i=0

Outgoing
score array
for k=0..29

concept vectors

Figure 4 Scoring Documents in the Score Circuit

4. PARAMETER MANIPULATION EXPERIMENT

Parameter Variation

The parameters of the AFE system were varied as follows:
there were a total of 7 values varied in minimum word
length size, 4 values varied in count bin resolution, 2 values
varied in score table bin resolution, and 6 values varied for
the number of dimensions for a total of (7 x 4 x 2 x 6) 336
combinations. In order to obtain a statistically accurate set
of results from a specific combination of the parameters, 30
individual runs were constructed. With 30 runs per
configuration, the total number of experimental runs is
10,080. The parameter manipulation experiment considers
the quality of the result using both the Mutual Information
(MI) and the Heuristic [1, 8, 10] algorithms that develop the
WMTs and STs. Considering both algorithms, a total of
20,160 variations of the system were simulated.

Corpus Profile

The corpus used in the experiment is from a number of
Usenet news groups retrieved from an archive on Google
[11]. The profile of the corpus is described in Figure 5.
The last three columns show the number of randomly
selected documents used for training and testing. Headers
were stripped so that the system could not simply train and
classify documents using labels.

1152710789738Total:

1077010402368chafftalk.origins

753837writingmisc.writing.moderated

613229wagnerhumanities.music.wagner

954847programmingcomp.programming.threads

492623neural_netscomp.ai.neural_nets

583028martial_artsrec.martial_arts.moderated

623131logicsci.logic

341816librariessoc.libraries.talk

341816frugalmisc.consumers.frugal_living

834241equestrianrec.equestrian

663432baseballalt.sports.baseball.stl_cardinals

1407070archaeologysci.archeology.moderated

TotalTestingTrainingLabelGoogle Group

1152710789738Total:

1077010402368chafftalk.origins

753837writingmisc.writing.moderated

613229wagnerhumanities.music.wagner

954847programmingcomp.programming.threads

492623neural_netscomp.ai.neural_nets

583028martial_artsrec.martial_arts.moderated

623131logicsci.logic

341816librariessoc.libraries.talk

341816frugalmisc.consumers.frugal_living

834241equestrianrec.equestrian

663432baseballalt.sports.baseball.stl_cardinals

1407070archaeologysci.archeology.moderated

TotalTestingTrainingLabelGoogle Group

Figure 5 Corpora Selection

All files utilized in the experiments had at least 200 words
of text and newsgroup headers stripped. The total set of
documents was divided in half for training and testing in all
groups except the “chaff” group. The “chaff” group was
used to provide interference by containing valid data that
did not relate to other topics. A subset of the chaff articles
was used in training so that chaff documents would fall into
the same category during testing. We assumed that when
large amounts of data were processed, the ratio of
interesting to uninteresting items would be small. By
training on chaff, we provided an attractor class for
undesired items and reduced the rate of false positives.

Figure 6 Minimum Word Lengths

An experiment was performed to test the precision of the
AFE system while manipulating the parameters of the
simulated hardware. By increasing the minimum word
length, the number of words derived from the training set of
documents decreases. When the minimum word length is
too short, however, many words are rejected by the
algorithms as insignificant. This distribution of word
lengths is shown in Figure 6.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:42:42 UTC from IEEE Xplore. Restrictions apply.

 5

Performance Metrics

Performance of the classification system is defined by the
use of the metrics precision and recall. For a given class,
precision is defined as the number of documents correctly
retrieved in that class divided by the total number of
documents retrieved, whether correctly assigned to the class
or not.

C = set documents for a single class

D = number documents in C retrieved

F = number documents not in C retrieved

D + F = total number documents in classification

Precision of C = D/(D + F)

For a given class, Recall is defined as the ratio of the
number of documents correctly retrieved in that class,
divided by the total number of documents that could have
been correctly retrieved in the class.

C = class of documents

D = number documents C retrieved

E = number documents in C not retrieved

|C| = D + E (total number of documents in C)

Recall of C = D/(D + E)

Thresholds for Less Confusion

Thresholds were used in the classification of documents for
individual runs. In the training phase of a run, the least
correct classification of a document was used as a minimum
for a classification in the testing phase. Thresholds insure
that there is a minimum score required for classification.
Forcing a classification of all documents will lead to
misclassification. The end user of the AFE system should
not have to sift through huge volumes of unwanted data.
The use of a threshold for classification insures that a
document is only classified if there is high confidence that it
matches a concept.

Results of Analysis

In the analysis of the experiment, the optimal thresholds for
each run were determined individually. A confusion matrix
was calculated for both the training data and the test data.
For example, Figure 7 shows a confusion matrix for a run of
the MI algorithm with the parameter setting of: minimum
word length = 5, count bit resolution = 2, score table
resolution = 8, and dimensionality = 3000. Figure 8 shows
the confusion matrix for the testing side of the run. No
documents used for training were used in the data processed

testing. Note that the system maintains good classification
as evidenced by the large numbers of correctly classified
documents on the diagonal.

Figure 7 Training Confusion Matrix for Mutual
Information Algorithm, minimum word length 5, count
bit resolution 2, score table resolution 8, and 3000
dimensions

Figure 8 Testing Confusion Matrix for Mutual
Information Algorithm, minimum word length 5, count
bit resolution 2, score table resolution 8, and 3000
dimensions

Averaging Runs

The last columns of Figures 7 and 8 show the recall for
documents in each class. The last row shows the precision.
 In order to determine how well the algorithm performed,
the averages of the precision and recall were computed over
all 30 runs. The average was computed for each class,
irrespective of the size of the class. The average recall for
the test set in Figure 8 is 39.72%. The average precision of
the test set in Figure 8 is 81.32%. For the Heuristic
algorithm, this run had an average recall value of 34.74%
and an average precision of 79.37%. Once the average of
each individual run is calculated, the average over the 30
runs is calculated with a 95% confidence interval. A
confidence interval is calculated by:

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:42:42 UTC from IEEE Xplore. Restrictions apply.

 6

95% confidence interval = 1.96 • σm

σm = σ/√N is the standard error of the mean.

An example of the plot for a dimensionality of 3000 is
shown in Figures 9 and 10.

Figure 9 Precision Results for Mutual Information
Algorithm using 3000 Dimensions and 4 bit Score Table
Resolution

Figure 10 Precision Results for Heuristic Algorithm
using 3000 Dimensions and 4 bit Score Table Resolution

5. RESULT ANALYSIS

When viewing all the graphs of the run, it is possible to see
where the dimensionality changes start to have a substantial
effect on the performance of the algorithms. When
combining the results for all dimensions in Figures 11 and
12, the inverse relationship between precision and recall can
be seen most clearly in plots of the Heuristic algorithm runs.
However, viewing the MI run results in Figures 13 and 14
shows little separation of results.

Figure 11 Heuristic Algorithm Precision Results for 1 bit
Count Resolution

Figure 12 Heuristic Algorithm Recall Results for 1 bit
Count Resolution

Figure 13 MI Algorithm Precision Results for 1 bit
Count Resolution

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:42:42 UTC from IEEE Xplore. Restrictions apply.

 7

Figure 14 MI Algorithm Recall Results for 1 bit Count
Resolution

Minimum Word Length

Consistently, a trend can be observed showing that as the
minimum word length increases, the precision decreases.
Conversely, recall goes up as the minimum word length
increases. However, the values in the range of 2, 3, 4, and 5
seem exceptionally close to each other in all configurations.
Both the MI and Heuristic algorithms parallel each other
when considering only a change in the minimum word
length. There is an incentive to limit processing of short
words so as to save the system from performing extra work.

The AFE system looks at 4 bytes per clock cycle. In terms
of processing requirements, the worst case occurs with a
minimum word length of 2. A sequence of text with short
words would generate 4 words every 3 clock cycles.
Therefore, it is possible to produce more than one word per
clock cycle. This could be handled by a circuit, but the
system would be over designed with no need for it. With a
minimum word length of 3, words could be produced as
often as every clock cycle. Although it is possible for the
count circuit to handle this load, as the system currently
does, with the goal of making the system faster, the creation
of base words is a detriment to performance. A small
minimum word length forces multiple clock cycles to be
used in order to produce a word.

When choosing a minimum word length of 3 bytes, the
circuit need only be designed to handle a new word every
clock cycle. If a minimum word length of 4 or 5 is chosen,
fewer words need to be counted. It is also the case that
most short words are stop words that should be ignored for
semantic analysis. Therefore, selecting a minimum word
length of 4 has an added advantage.

There are other motivations for using larger minimum word
lengths. It is not desirable to find acceptable strings in
binary files. The AFE Base Word Circuit does not confirm
that words fall into a dictionary. Words like “ZKT” are
treated the same as words like “YES” if they happen to hash
to the same base word table entry. It is also possible that

these nonsense words can produce the same base word as a
word like ``RIVER'' with a hash collision. Reducing noise
is one of the benefits of increasing minimum word length.

Number of Features

The degraded separation that is seen when changing
dimensions in the Heuristic algorithm remains when count
bit and score bit resolutions are increased. The confusion
matrices for the Heuristic algorithm show that the precision
is low because chaff is misclassified. This occurs even
more often when the parameters of the system are set so that
there are 500 or 250 bins for features. The Recall for those
runs is high. However, if the goal of the system is to
present data with high precision, limiting the number of
features for the Heuristic algorithm becomes an issue. The
effect of limiting features affects the precision of the
Heuristic algorithm when the number of features drops from
2,000 to 1,000. The runs with 4,000, 3,000, and 2,000
feature results are close for all other parameter
manipulations. But, 2,000 features appear to be the lower
end of the number of features necessary to maintain high
precision. Using less than 2,000 features significantly
degrades the Heuristic algorithm.

Results for the MI algorithm show that the change in the
number of features is not as much of an issue for the
performance of the algorithm. The results show that the MI
is not affected much when the number of features was
reduced to 2,000. The reason is that the MI algorithm rarely
uses more than 1,500 features with the training data in these
experiments.

Count Bit Resolution

Results from running the Heuristic algorithm show only
minimal differences in precision occur when the count bit
resolution changes. This effect can be observed in Figures
15 and 16. The MI algorithm does show minimal
degradation as a result of changes to the count bit
resolution. Figures 17 and 18 show how changes have a
greater affect on the performance of the system.
Consistently, for the MI algorithm, 2 bit count resolution
works slightly better than the other values.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:42:42 UTC from IEEE Xplore. Restrictions apply.

 8

Figure 15 Heuristic Algorithm Precision Results for
2,000 Dimensions and 4 bit Score Table Resolution

Figure 16 Heuristic Algorithm Precision Results for
2,000 Dimensions and 8 bit Score Table Resolution

Figure 17 MI Algorithm Precision Results for 2,000
Dimensions and 4 bit Score Table Resolution

Figure 18 MI Algorithm Precision Results for 2,000
Dimensions and 8 bit Score Table Resolution

6. SIGNIFICANCE EVALUATION

We ran an experiment to find a set of parameters that
required fewer hardware resources while not losing
precision. In an experiment with 12 newsgroups, the choice
of minimum word length of 4, 2,000 features, 2 bit count bit
resolution, and 4 bit score bit resolution were shown to not
lessen the precision of the system. When using the MI
algorithm, the average precision of the original
configuration is 89.3% with a standard deviation of 29.2.
The proposed setting has a precision of 93.5% with a
standard deviation of 30.8. The proposed setting has a
higher average precision with a slightly higher standard
deviation. It would appear that the changes did not degrade
performance, but rather improved it. However, looking at
the results from the Heuristic algorithm, the original setting
yielded an average precision of 91.3% with a standard
deviation of 28.2. This is in contrast to the proposed setting
that had an average precision of 81.8% with a standard
deviation of 27.8. For the Heuristic algorithm, the change
in settings appears to be detrimental to precision.

To test the significance of the results, a Paired T test is used.
The results from the two settings provide a distribution of
results and the test indicates the amount of difference
between the two results. The evaluation takes the form:

Paired T Test Statistic = D/(Sd /√n)

where D is the average of the differences at each data point.
 Sd is the standard deviation of the differences and n is the
number of data points (30). The results from the Heuristic
algorithm are compared for the original and proposed
settings. The D value is 9.50 and the Sd value is 6.11 which
results in the value of 8.51. The P value for t0.0005 is 3.646
which shows that there is a statistical difference when
changing the settings of the AFE. Applying the same T test
to the MI results shows D is -4.28 and Sd is 5.82. This
results in a value of -4.03 which indicates a significant

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:42:42 UTC from IEEE Xplore. Restrictions apply.

 9

difference in the results of the system. For the MI
algorithm, the performance increases and for the Heuristic
algorithm it decreases. Performing the T test between the
results of the two algorithms shows that there is no
difference between the two algorithms with the original
settings of the system. The T test at the original settings has
a value of 1.90 which does not beat the criteria of 3.646. In
comparing the performance of both algorithms with the
proposed settings, the T test has a value of 10.84. It is clear
that the MI algorithm achieves greater precision at the new
settings.

7. CONCLUSION

In this paper, a framework was developed to determine the
optimal parameters for representation of flows for
classification. The numeric representation of a flow vector
affects the area in the FPGA and computational processing
time. By finding optimal parameters for the AFE system,
the precision in classification is maintained while
minimizing the cost to implement the system.

The experiment performed within this paper shows that for
12 newsgroups, the size of the vectors needed to represent
flows can be reduced by 75% without loss of precision.
The technique used for the parameter experiment can be
utilized to obtain settings for other types of data. Since the
AFE system makes use of a pipeline for processing, other
types of processing circuits could be inserted into the
pipeline. Metadata, for example, could make use of the area
saved by the reduced space needed to classify text.

REFERENCES

[1] J. W. Lockwood, S. G. Eick, J. Mauger, J. Byrnes, R. P.
Loui, A. Levine, D. J. Weishar, and A. Ratner, “Hardware
Accelerated Algorithms for Semantic Processing of
Document Streams”, 2006 IEEE Aerospace Conference,
March 4-11, 2006.

[2] J. W. Lockwood, S. G. Eick, D. J. Weishar, R. P. Loui, J.
Moscola, C. Kastner, A. Levine, and M. Attig,
“Transformation Algorithms for Data Streams, 2005 IEEE
Aerospace Conference”, March 5-12, 2005.

[3] J. Byrnes and R. Rohwer, “An Architecture for Streaming
Coclustering in High Speed Hardware”, IEEE Aerospace
Conference, March 4-11, 2006.

[4] C. Kastner, G. A. Covington, A. Levine, and J.
Lockwood, “HAIL: A Hardware-Accelerated Algorithm
for Language Identification”, 15th Annual Conference on
Field Programmable Logic and Applications (FPL),
August 24-26, 2005.

[5] J. W. Lockwood, “Evolvable Internet Hardware
Platforms”, NASA/DoD Workshop on Evolvable
Hardware (EHW’01), July 2001.

[6] John W. Lockwood, Jon S. Turner, David E. Taylor,
“Field Programmable Port Extender (FPX) for Distributed
Routing and Queuing”, ACM International Symposium
on Field Programmable Gate Arrays (FPGA'2000),
February 2000.

[7] John W. Lockwood, Naji Naufel, Jon S. Turner, David E.
Taylor, “Reprogrammable Network Packet Processing on
the Field Programmable Port Extender (FPX)”, ACM
International Symposium on Field Programmable Gate
Arrays (FPGA'2001), February 2001.

 [8] J. B. MacQueen, “Some Methods for Classification and
Analysis of Multivariate Observations”, 5th Symposium
on Mathematics, Statistics and Probability, 1967.

[9] G. A. Covington, C. Comstock, A. Levine, J. Lockwood,
and Y. H. Cho, “High Speed Document Clustering in
Reconfigurable Hardware” 16th Annual Conference on
Field Programmable Logic and Applications, August 28-
30, 2006.

[10] J. Byrnes and R. Rohwer, “Text Modeling for Real-Time
Document Categorization”, IEEE Aerospace Conference,
March, 2005.

[11] Google Inc. Google groups. http://groups.google.com/,
2005

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:42:42 UTC from IEEE Xplore. Restrictions apply.

 10

BIOGRAPHY

Andrew Levine is a graduate student in the Reconfigurable
Network Group at Washington University in St. Louis. His
primary interest is in Machine Learning techniques for
classification and clustering. Currently, he is focusing on
streaming data algorithms for classification and concept
discovery. He is intending to pursue a Ph.D. in Artificial
Intelligence.

John W. Lockwood designs and
implements networking systems in
reconfigurable hardware. He leads the
Reconfigurable Network Group (RNG) at
Washington University. The RNG
research group developed the Field
programmable Port Extender (FPX) to
enable rapid prototype of extensible

network modules in Field Programmable Gate Array
(FPGA) technology. He is an Associate professor in the
Department of Computer Science and Engineering at
Washington University in Saint Louis. He has published
over 75 full-length papers in journals and major technical
conference proceedings that describe technologies for
providing extensible network services in wireless LANs and
in high-speed networks. Professor Lockwood has served as
the principal investigator on grants from the National
Science Foundation, Xilinx, Altera, Nortel Networks,
Rockwell Collins, and Boeing. He has worked in industry
for AT&T Bell Laboratories, IBM, Science Applications
International Corporation (SAIC), and the National Center
for Supercomputing Applications (NCSA). He served as a
co-founder of Global Velocity, a networking startup
company focused on high-speed data security. Dr.
Lockwood earned his MS, BS, and Ph.D degrees from the
Department of Electrical and Computer Engineering at the
University of Illinois. He is a member of IEEE, ACM, Tau
Beta Pi, and Eta Kappa Nu.

Ron Loui is an Associate Professor in Computer Science
and Engineering. He is the author of over seventy articles in
leading technical journals published over the past two
decades including AI Journal, Cognitive Science,
Computational Intelligence, Journal of Philosophy, Journal
of Symbolic Logic, MIT Encyclopedia on Cognitive Science,
AI and Law, Theory and Decision, CACM, and ACM
Computing Surveys. He was a Stanford Sloan Fellow and
received his undergraduate degree at Harvard with high
honors in Applied Mathematics: Decision and Control,
1982. He received a joint Computer Science and
Philosophy doctoral degree from the University of
Rochester after a MS, in 1987.

Young Cho is a Visiting Assistant Professor in the
Computer Science and Engineering Department of
Washington University in St. Louis. He has earned his BA
in Computer Science from UC Berkeley while working
under the supervision of Prof. David Patterson and Prof.
David Culler, MSE in Computer Engineering at UT Austin
under Prof. Brian Evans, and Ph.D in Electrical
Engineering at UCLA under Prof. Mangione-Smith. He has
also worked under the supervision of Dr. Charles Seitz and
Dr. Danny Cohen at a high performance interconnect
company, Myricom, Inc. He has designed and implemented
a number of high performance research and development
projects as well as commercial products during his career.
His areas of expertise include network security, computer
networks, high performance computer architecture, and
reconfigurable computers. He is a member of IEEE and
ACM.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:42:42 UTC from IEEE Xplore. Restrictions apply.

