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Abstract—As described in our prior papers, we have 
implemented a system that performs real-time analysis and 
classification of network traffic using reconfigurable 
hardware. In this paper, we consider how to optimize the 
performance and make best use of the hardware resources 
by simulating the effect of parameter variation. We have 
devised a systematic method to determine the best 
parameters for the hardware such that we do not sacrifice 
the quality of the result.  We applied the method to 
determine how our existing system could best identify the 
topics of Internet newsgroup postings as the content streams 
over a Gigabit Ethernet link.  1 2 
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1. INTRODUCTION 

Every day, trillions of packets are transferred across 
networks throughout the world.  To provide security for the 
users of these networks, network administrators analyze as 
much content as possible.   To be useful, this network traffic 
must be processed in real-time to avoid accumulating a 
backlog.  Previously, administrators were overwhelmed by 
massive volumes of data.   

To enable processing of large volumes of data, we 
implemented a hardware-accelerated system called the 
Automated Front End (AFE) system [1,2].  This AFE 
system identifies the topic and/or language of network 
traffic flows as they pass over backbone links.  The system 
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outputs scores that indicate proximity to known topics or 
dialects of a language.    

The AFE system is a hardware implementation of a 
Machine Learning technique.  Data is processed at high 
speed by using Field Programmable Gate Array (FPGA) 
devices.  Use of the FPGA devices enable the system to 
process and annotate data at Gigabit/second rates.  
Parameters of the hardware were tuned to provide the best 
quality of results.  Using parameters that find too much data 
overwhelms an analyst.  Using parameters that find too little 
data is also unsatisfactory because important data may be 
overlooked. 

Several considerations were factored into the design of the 
AFE system.  The AFE hardware was implemented using a 
stack of 5 FPX platforms.  Verification of each FPX module 
enabled the incremental verification of the entire system.  
Software tools were written to verify and test each module.  
These tools used the same data formats used by hardware.  
By standardizing the interfaces for the components of the 
AFE system, multiple developers were able to contribute 
components to the system.  Our tools not only enabled us to 
verify correct operation of the actual AFE hardware that 
was implemented, but also enabled us to experiment with 
different variations of the AFE system that used other 
parameters.  

2. BACKGROUND 

Field Programmable Port Extender 

The AFE system was built using the Field Programmable 
Port Extender (FPX) platform, an open, reconfigurable 
hardware platform developed by members of the 
Reconfigurable Networking Group at Washington 
University in St. Louis [5,6,7].   Hardware resources on the 
FPX platform were optimized for processing of data packets 
and flows passing over Gigabit/second links.  The FPX 
includes two FPGA devices, two banks of Static Random 
Access Memory (SRAM), and two banks of Synchronous 
Dynamic Random Access Memory (SDRAM).  In total, the 
FPX hardware can access over a Gigabyte (GB) of memory 
using the four parallel memory banks.  The first FPGA on 
the FPX, the Network Interface Device (NID), is a Xilinx 
XCV600E that routes data through the FPX platform, 
dynamically reconfigures the other FPGA device, and 
processes commands sent over the network. The second 
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FPGA, the Reprogrammable Application Device, is a large 
Xilinx XCV2000E FPGA device that performs 
reconfigurable data processing as per the configuration of 
the bitfile loaded by the NID into the RAD.   

Circuits for the RAD can be implemented using any 
standard Hardware Description Language (HDL).  For our 
work, we compiled designs written with the Very high 
speed integrated circuit HDL (VHDL), synthesized circuits 
using Synplicity and Xilinx Electronic Design Automation 
(EDA) tools, and then downloaded bitstreams into the RAD 
on the FPX.  

The complete AFE system was built using a stack of five 
FPX modules.  Each FPX module performed a different 
function.  Together, all of the modules implemented a deep 
pipeline for packet and flow processing.  

TCP Module

Baseword

Count

Score

Reporting  
Figure 1 – A stack of five Field-programmable Port 
Extender (FPX) platforms built with a total of ten 
FPGAs (5 RADs and 5 NIDs) implement Automated 
Front End (AFE) processing Hardware.  

Circuits that run on the FPX exploits parallel hardware to 
achieve Gigabit/second data processing rates.  The FPX 
platform has been used to build dozens of high-speed 
networking applications, but is especially well suited for the 
task of deep packet inspection.  By using hardware, rather 
than software, the FPX platform can process data at rates 
that far surpass conventional computing systems.  A single 
FPX hardware module can replace a rack full of PCs.  
Unlike an Application Specific Integrated Circuit (ASIC), 
the FPGA bitfiles on the FPX platforms can be dynamically 
reconfigured to perform different processing tasks.   

Configuration of the System 

The configuration of the hardware for the AFE system is 
shown in Figure 1.  The system is implemented using a 
stack of five FPX cards which are individually configured 
to (1) analyze TCP/IP flows, (2) identify basewords that 
appear in text, (3) count the frequency of the basewords, (4) 
score the data to known concepts, and (5) report the score to 
an external software system.  

Data is received by the system cards from a Line Card (LC) 
that stacks on top of the FPX modules.  Two types of LCs 

were built: one for OC48 and the other for Gigabit Ethernet. 
  
A chassis holds the stack of FPX cards, the configuration is 
shown in Figure 2.   In this AFE system, four FPX cards are 
stacked on the left side of a chassis below the LC to 
reconstruct the traffic flows and process the streams of data. 
The stacked FPX cards are connected together via high-
speed Utopia interfaces and data flows between cards using 
virtual circuits.  Physically, each FPX card is connected to 
other FPX modules above and below that card.  A 
backplane interconnects a stack of FPX modules on the left 
and right side of the chassis.  A fifth FPX card (called the 
NID PT) is placed on the right side of the chassis.  This 
module connects to a Gigabit Ethernet LC to report a 
summary of each flow to an external software system.  The 
final output of the hardware is transmitted using standard 
UDP/IP packets which are in turn received by a server that 
“catches” the results. 

The processing stages of the AFE system are implemented 
with a deep pipeline broken down to basic functions. First, 
the TCP Circuit extracts payloads from network traffic.  
Second, the Base Word Circuit analyzes payloads by 
identifying acceptable byte sequences and passing them 
through a dimensionality reduction system called the Word 
Mapping Table (WMT).  Third, values are passed to the 
Count Circuit which builds a representation of the document 
into an array.  Finally, the Score Circuit completes a dot 
product with preloaded concepts represented by arrays of 
values. The output of the score circuit is passed to the NID 
PT which in turn writes out summaries of the flows to the 
hardware Gigabit LC [1]. 

 
Figure 2 Processing Stack of FPX Cards 

3. HARDWARE SEMANTIC PROCESSING 

Although reconfigurable hardware can process data at high 
speeds, certain considerations must be taken into account 
when implementing modules with FPGAs.  For example, 
floating point computation is possible but it is costly in 
terms of the resulting size of hardware circuits.  A floating 
point multiplier, for example, is four times larger than an 
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integer multiplier.  Implementing a few floating point units 
is not a problem, but does not make the best use of the 
hardware’s resources.  For semantic processing, a large 
number of features is needed to represent a document.  
Therefore, a large number of multipliers would require a 
large amount of hardware.  Fixed-size multipliers are much 
better suited for the task than a floating point unit. 

Extracting Features - The Base Word Circuit 

Feature extraction is performed in the Base Word Circuit. 
The Base Word Circuit considers a word to be a series of 
bytes that are identified as acceptable in a given sequence.  
Acceptance of byte sequences is different than tokenization. 
Tokenization of words is performed by searching for tokens 
and segmenting sequences of bytes at those known tokens 
whereas the identification of words from acceptable byte 
sequences allows sequences to be built from any pattern that 
adheres to acceptable values. 

The AFE system can process words in different languages 
by supporting characters that are either a one or two bytes 
long.  For the AFE system, any sequences of 3 to 16 
characters can constitute an acceptable word.  Sequences 
that extend past 16 characters are truncated to a length of 
16. For example, a long English word (using single-byte 
encoding) is truncated to the shorter 16-byte string as shown 
below: 

antidisestablishmentarianism → antidisestablish 

Minimum Word Length 

The AFE system can be set to process only base words that 
have a minimum length.  By default, we process data with 
word lengths that have a minimum of 3 characters.  For our 
analysis, however, we varied the minimum word lengths 
from 2 to 8 characters. 

After a word is identified, the AFE system hashes that word 
into a 20-bit field that has a range of 0 to 1,048,575.  The 
Word Mapping Table (WMT) uses this 20-bit value to 
index a memory location in an SRAM attached to the FPX 
card.  Each element in the memory holds a smaller value 
which falls in the range of 0 to 3,999--the default 
dimensions that we use to represent a document.  This 
content of the Word Mapping Table is programmable by 
software.  An example of how input words are hashed into a 
20-bit value then mapped into a baseword in the range of 0 
to 3,999 is shown in Figure 3.  The output from the 
Baseword module produces a list of features that appear in 
the documents. 
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Figure 3 Word Mapping Table in Base Word Circuit 

Dimensionality – Number of Features 

In this work, we considered the effect of using fewer 
dimensions to represent features.  By default, the AFE 
system uses 4,000 bins to represent the documents and 
concept vectors.  We varied the parameters to determine the 
effect of using dimensions: 3,000, 2,000, 1,000, 500, and 
250 dimensions. 

Building Representation - The Count Circuit 

The feature counting function is performed by the Count 
Circuit.  The Count Circuit receives a list of extracted 
features and increments the appropriate counters for the 
document.  The circuit accumulates statistics of words that 
appear in the document by tracking the counts for each 
flow.  The hardware uses integers to track the counts. As 
one of the design considerations of the AFE system, 2 
KBytes of SRAM are reserved for each vector because this 
is the amount of space needed to represent 4,000 feature 
vectors with 4 bit counters.  When a document is finished 
counting, the vector is passed down the pipeline to the 
Score module. 

Count Bit Resolution 

The Count module in the AFE system uses an array of 
saturating, finite-sized counters to track the frequency of 
occurrence for each baseword.  In this analysis, we consider 
the effect of using fewer bits for the count of each feature. 
By default, the resolution of the bins in the document’s 
count arrays is nominally 4 bits allows for a range of 0 to 15 
in each bin.  Through analysis in this paper, we also 
consider counters that use: 3 bit, 2 bit, and 1 bit resolution. 

Scoring Documents - The Score Circuit 

Scores are computed as a dot product computation between 
a document's representation generated by the count circuit 
and known concepts.  The concepts are represented with the 
same number of feature dimensions and either 4-bit or 8-bit 
integer counters.  With 4,000 dimensions, 2KB or 4KB are 
needed to represent a concept depending on whether the 
size of each feature is a half byte or a full byte. The Score 
Circuit computes a dot product of the document against all 
the loaded concepts as seen in Figure 4. When the 
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computation is complete, the results are passed out of the 
system. 

Score Bit Resolution 

In this work, we considered variations of the system with 8 
bits or 4 bits of resolution.  Hardware circuits were built 
that supported both values of resolution.  A tradeoff exists 
with hardware because more concepts can be represented 
using a smaller resolution. 

Incoming
document vector

Parallel computation of 
distance between document vector

with each known concept vector

…

Σ (Documenti * Concepti,k)
(dot product)

Σ Σ Σ Σ Σ Σ ΣΣ Σ
i=3999

i=0

Outgoing
score array
for k=0..29

concept vectors

Incoming
document vector

Parallel computation of 
distance between document vector

with each known concept vector

…

Σ (Documenti * Concepti,k)
(dot product)

Σ Σ Σ Σ Σ Σ ΣΣ Σ
i=3999

i=0

Outgoing
score array
for k=0..29

concept vectors

 
Figure 4 Scoring Documents in the Score Circuit 

4. PARAMETER MANIPULATION EXPERIMENT 

Parameter Variation 

The parameters of the AFE system were varied as follows:  
there were a total of 7 values varied in minimum word 
length size, 4 values varied in count bin resolution, 2 values 
varied in score table bin resolution, and 6 values varied for 
the number of dimensions for a total of (7 x 4 x 2 x 6) 336 
combinations.  In order to obtain a statistically accurate set 
of results from a specific combination of the parameters, 30 
individual runs were constructed. With 30 runs per 
configuration, the total number of experimental runs is 
10,080.  The parameter manipulation experiment considers 
the quality of the result using both the Mutual Information 
(MI) and the Heuristic [1, 8, 10] algorithms that develop the 
WMTs and STs.   Considering both algorithms, a total of 
20,160 variations of the system were simulated. 

Corpus Profile 

The corpus used in the experiment is from a number of 
Usenet news groups retrieved from an archive on Google 
[11].  The profile of the corpus is described in Figure 5.  
The last three columns show the number of randomly 
selected documents used for training and testing.  Headers 
were stripped so that the system could not simply train and 
classify documents using labels. 

1152710789738Total:

1077010402368chafftalk.origins

753837writingmisc.writing.moderated

613229wagnerhumanities.music.wagner

954847programmingcomp.programming.threads

492623neural_netscomp.ai.neural_nets

583028martial_artsrec.martial_arts.moderated

623131logicsci.logic

341816librariessoc.libraries.talk

341816frugalmisc.consumers.frugal_living

834241equestrianrec.equestrian

663432baseballalt.sports.baseball.stl_cardinals

1407070archaeologysci.archeology.moderated

TotalTestingTrainingLabelGoogle Group

1152710789738Total:

1077010402368chafftalk.origins

753837writingmisc.writing.moderated

613229wagnerhumanities.music.wagner

954847programmingcomp.programming.threads

492623neural_netscomp.ai.neural_nets

583028martial_artsrec.martial_arts.moderated

623131logicsci.logic

341816librariessoc.libraries.talk

341816frugalmisc.consumers.frugal_living

834241equestrianrec.equestrian

663432baseballalt.sports.baseball.stl_cardinals

1407070archaeologysci.archeology.moderated

TotalTestingTrainingLabelGoogle Group

 
Figure 5 Corpora Selection 

All files utilized in the experiments had at least 200 words 
of text and newsgroup headers stripped.  The total set of 
documents was divided in half for training and testing in all 
groups except the “chaff” group.  The “chaff” group was 
used to provide interference by containing valid data that 
did not relate to other topics.  A subset of the chaff articles 
was used in training so that chaff documents would fall into 
the same category during testing. We assumed that when 
large amounts of data were processed, the ratio of 
interesting to uninteresting items would be small.  By 
training on chaff, we provided an attractor class for 
undesired items and reduced the rate of false positives. 

 
Figure 6 Minimum Word Lengths 

An experiment was performed to test the precision of the 
AFE system while manipulating the parameters of the 
simulated hardware.  By increasing the minimum word 
length, the number of words derived from the training set of 
documents decreases.  When the minimum word length is 
too short, however, many words are rejected by the 
algorithms as insignificant.  This distribution of word 
lengths is shown in Figure 6. 
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Performance Metrics 

Performance of the classification system is defined by the 
use of the metrics precision and recall.  For a given class, 
precision is defined as the number of documents correctly 
retrieved in that class divided by the total number of 
documents retrieved, whether correctly assigned to the class 
or not. 

C = set documents for a single class 

D = number documents in C retrieved 

F = number documents not in C retrieved 

D + F = total number documents in classification 

Precision of C = D/(D + F) 

For a given class, Recall is defined as the ratio of the 
number of documents correctly retrieved in that class, 
divided by the total number of documents that could have 
been correctly retrieved in the class. 

C = class of documents 

D = number documents C retrieved 

E = number documents in C not retrieved 

|C| = D + E (total number of documents in C) 

Recall of C = D/(D + E) 

Thresholds for Less Confusion 

Thresholds were used in the classification of documents for 
individual runs.  In the training phase of a run, the least 
correct classification of a document was used as a minimum 
for a classification in the testing phase.  Thresholds insure 
that there is a minimum score required for classification.  
Forcing a classification of all documents will lead to 
misclassification.  The end user of the AFE system should 
not have to sift through huge volumes of unwanted data.  
The use of a threshold for classification insures that a 
document is only classified if there is high confidence that it 
matches a concept. 

Results of Analysis 

In the analysis of the experiment, the optimal thresholds for 
each run were determined individually.  A confusion matrix 
was calculated for both the training data and the test data.  
For example, Figure 7 shows a confusion matrix for a run of 
the MI algorithm with the parameter setting of: minimum 
word length = 5, count bit resolution = 2, score table 
resolution = 8, and dimensionality = 3000.  Figure 8 shows 
the confusion matrix for the testing side of the run.  No 
documents used for training were used in the data processed 

testing.  Note that the system maintains good classification 
as evidenced by the large numbers of correctly classified 
documents on the diagonal. 

 
Figure 7 Training Confusion Matrix for Mutual 
Information Algorithm, minimum word length 5, count 
bit resolution 2, score table resolution 8, and 3000 
dimensions 

 
Figure 8 Testing Confusion Matrix for Mutual 
Information Algorithm, minimum word length 5, count 
bit resolution 2, score table resolution 8, and 3000 
dimensions 

Averaging Runs 

The last columns of Figures 7 and 8 show the recall for 
documents in each class.  The last row shows the precision. 
 In order to determine how well the algorithm performed, 
the averages of the precision and recall were computed over 
all 30 runs.  The average was computed for each class, 
irrespective of the size of the class. The average recall for 
the test set in Figure 8 is 39.72%.  The average precision of 
the test set in Figure 8 is 81.32%.  For the Heuristic 
algorithm, this run had an average recall value of 34.74% 
and an average precision of 79.37%.  Once the average of 
each individual run is calculated, the average over the 30 
runs is calculated with a 95% confidence interval.  A 
confidence interval is calculated by: 
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95% confidence interval = 1.96 • σm 

σm = σ/√N is the standard error of the mean. 

An example of the plot for a dimensionality of 3000 is 
shown in Figures 9 and 10. 

 

Figure 9 Precision Results for Mutual Information 
Algorithm using 3000 Dimensions and 4 bit Score Table 
Resolution 

 
Figure 10 Precision Results for Heuristic Algorithm 
using 3000 Dimensions and 4 bit Score Table Resolution 

5. RESULT ANALYSIS 

When viewing all the graphs of the run, it is possible to see 
where the dimensionality changes start to have a substantial 
effect on the performance of the algorithms.  When 
combining the results for all dimensions in Figures 11 and 
12, the inverse relationship between precision and recall can 
be seen most clearly in plots of the Heuristic algorithm runs. 
However, viewing the MI run results in Figures 13 and 14 
shows little separation of results. 

 

Figure 11 Heuristic Algorithm Precision Results for 1 bit 
Count Resolution 

 
Figure 12 Heuristic Algorithm Recall Results for 1 bit 
Count Resolution 

 

Figure 13 MI Algorithm Precision Results for 1 bit 
Count Resolution 
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Figure 14 MI Algorithm Recall Results for 1 bit Count 
Resolution 

Minimum Word Length 

Consistently, a trend can be observed showing that as the 
minimum word length increases, the precision decreases. 
Conversely, recall goes up as the minimum word length 
increases. However, the values in the range of 2, 3, 4, and 5 
seem exceptionally close to each other in all configurations. 
Both the MI and Heuristic algorithms parallel each other 
when considering only a change in the minimum word 
length.  There is an incentive to limit processing of short 
words so as to save the system from performing extra work. 

The AFE system looks at 4 bytes per clock cycle.  In terms 
of processing requirements, the worst case occurs with a 
minimum word length of 2.  A sequence of text with short 
words would generate 4 words every 3 clock cycles.  
Therefore, it is possible to produce more than one word per 
clock cycle.  This could be handled by a circuit, but the 
system would be over designed with no need for it.  With a 
minimum word length of 3, words could be produced as 
often as every clock cycle.  Although it is possible for the 
count circuit to handle this load, as the system currently 
does, with the goal of making the system faster, the creation 
of base words is a detriment to performance.  A small 
minimum word length forces multiple clock cycles to be 
used in order to produce a word. 

When choosing a minimum word length of 3 bytes, the 
circuit need only be designed to handle a new word every 
clock cycle.  If a minimum word length of 4 or 5 is chosen, 
fewer words need to be counted.  It is also the case that 
most short words are stop words that should be ignored for 
semantic analysis.  Therefore, selecting a minimum word 
length of 4 has an added advantage. 

There are other motivations for using larger minimum word 
lengths.  It is not desirable to find acceptable strings in 
binary files.  The AFE Base Word Circuit does not confirm 
that words fall into a dictionary.  Words like “ZKT” are 
treated the same as words like “YES” if they happen to hash 
to the same base word table entry.  It is also possible that 

these nonsense words can produce the same base word as a 
word like ``RIVER'' with a hash collision.  Reducing noise 
is one of the benefits of increasing minimum word length. 

Number of Features 

The degraded separation that is seen when changing 
dimensions in the Heuristic algorithm remains when count 
bit and score bit resolutions are increased.  The confusion 
matrices for the Heuristic algorithm show that the precision 
is low because chaff is misclassified.  This occurs even 
more often when the parameters of the system are set so that 
there are 500 or 250 bins for features. The Recall for those 
runs is high.  However, if the goal of the system is to 
present data with high precision, limiting the number of 
features for the Heuristic algorithm becomes an issue.  The 
effect of limiting features affects the precision of the 
Heuristic algorithm when the number of features drops from 
2,000 to 1,000.  The runs with 4,000, 3,000, and 2,000 
feature results are close for all other parameter 
manipulations.  But, 2,000 features appear to be the lower 
end of the number of features necessary to maintain high 
precision.  Using less than 2,000 features significantly 
degrades the Heuristic algorithm. 

Results for the MI algorithm show that the change in the 
number of features is not as much of an issue for the 
performance of the algorithm. The results show that the MI 
is not affected much when the number of features was 
reduced to 2,000.  The reason is that the MI algorithm rarely 
uses more than 1,500 features with the training data in these 
experiments. 

Count Bit Resolution 

Results from running the Heuristic algorithm show only 
minimal differences in precision occur when the count bit 
resolution changes.  This effect can be observed in Figures 
15 and 16.  The MI algorithm does show minimal 
degradation as a result of changes to the count bit 
resolution. Figures 17 and 18 show how changes have a 
greater affect on the performance of the system. 
Consistently, for the MI algorithm, 2 bit count resolution 
works slightly better than the other values. 
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Figure 15 Heuristic Algorithm Precision Results for 
2,000 Dimensions and 4 bit Score Table Resolution 

 
Figure 16 Heuristic Algorithm Precision Results for 
2,000 Dimensions and 8 bit Score Table Resolution 

 
Figure 17 MI Algorithm Precision Results for 2,000 
Dimensions and 4 bit Score Table Resolution 

 
Figure 18 MI Algorithm Precision Results for 2,000 
Dimensions and 8 bit Score Table Resolution 

6. SIGNIFICANCE EVALUATION 

We ran an experiment to find a set of parameters that 
required fewer hardware resources while not losing 
precision.  In an experiment with 12 newsgroups, the choice 
of minimum word length of 4, 2,000 features, 2 bit count bit 
resolution, and 4 bit score bit resolution were shown to not 
lessen the precision of the system. When using the MI 
algorithm, the average precision of the original 
configuration is 89.3% with a standard deviation of 29.2.  
The proposed setting has a precision of 93.5% with a 
standard deviation of 30.8. The proposed setting has a 
higher average precision with a slightly higher standard 
deviation. It would appear that the changes did not degrade 
performance, but rather improved it. However, looking at 
the results from the Heuristic algorithm, the original setting 
yielded an average precision of 91.3% with a standard 
deviation of 28.2.  This is in contrast to the proposed setting 
that had an average precision of 81.8% with a standard 
deviation of 27.8.  For the Heuristic algorithm, the change 
in settings appears to be detrimental to precision. 

To test the significance of the results, a Paired T test is used. 
The results from the two settings provide a distribution of 
results and the test indicates the amount of difference 
between the two results.  The evaluation takes the form: 

Paired T Test Statistic = D/(Sd /√n) 

where D is the average of the differences at each data point. 
 Sd is the standard deviation of the differences and n is the 
number of data points (30).  The results from the Heuristic 
algorithm are compared for the original and proposed 
settings.  The D value is 9.50 and the Sd value is 6.11 which 
results in the value of 8.51. The P value for t0.0005 is 3.646 
which shows that there is a statistical difference when 
changing the settings of the AFE.  Applying the same T test 
to the MI results shows D is -4.28 and Sd is 5.82.  This 
results in a value of -4.03 which indicates a significant 
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difference in the results of the system.  For the MI 
algorithm, the performance increases and for the Heuristic 
algorithm it decreases.  Performing the T test between the 
results of the two algorithms shows that there is no 
difference between the two algorithms with the original 
settings of the system.  The T test at the original settings has 
a value of 1.90 which does not beat the criteria of 3.646.  In 
comparing the performance of both algorithms with the 
proposed settings, the T test has a value of 10.84.  It is clear 
that the MI algorithm achieves greater precision at the new 
settings. 

7. CONCLUSION 

In this paper, a framework was developed to determine the 
optimal parameters for representation of flows for 
classification. The numeric representation of a flow vector 
affects the area in the FPGA and computational processing 
time.  By finding optimal parameters for the AFE system, 
the precision in classification is maintained while 
minimizing the cost to implement the system. 

The experiment performed within this paper shows that for 
12 newsgroups, the size of the vectors needed to represent 
flows can be reduced by 75% without loss of precision.  
The technique used for the parameter experiment can be 
utilized to obtain settings for other types of data.  Since the 
AFE system makes use of a pipeline for processing, other 
types of processing circuits could be inserted into the 
pipeline.  Metadata, for example, could make use of the area 
saved by the reduced space needed to classify text. 
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