
Auralization of Process and Port Status Using

Program Binaries to Generate Semantically

Meaningful Non-Fatiguing Noise as Canonical

Sound Signals

Ronald Loui, University of Illinois Springfield

Dylan Dozier, Lincoln Land College

Evan Barber and Jeswanth Harish, University of Illinois Springfield

r.p.loui@gmail.com

Abstract

We describe using auralization to monitor process

stack and netstat status on a server or small group

of servers. Using the auditory channel is especially

useful for monitoring because it can be done without

taking much attention. Our contribution is to sug-

gest generating noise-like sounds that more natural-

ly fade into the background, and are less fatiguing

over long monitoring sessions. Although our noises

are not musically or tonally interesting, they are

nevertheless semantically identifiable and succeed in

indicating changes of state.

I. INTRODUCTION

Server monitoring by systems administrators is im-

portant for computer security, and usually requires well

focused visual attention. For example, running a top or

netstat repeatedly requires that the sysadmin interrupt

other tasks and read the output. Various kinds of textu-

al reports of change of state can reduce the frequency of

interruption, but still require the operator to read the

alert. The auditory channel, however, is usually availa-

ble for simultaneous processing. Several authors have

considered using active alerts and passive monitoring of

state, in lieu of visual monitoring (see PRIOR WORK sec-

tion). The obvious advantage is that a sysadmin can

“keep an eye” on the state of the server constantly,

without actually using one's eyes, i.e., without putting a

load on the precious visual information channel. Audi-

tory information is particularly well suited for simulta-

neous cognitive processing.

Although this is clearly a good idea, it has not found its

way into standard practice. One problem is that tools

that permit operators to generate sounds do not give

much guidance on what sounds to generate. At best,

this leaves the sysadmin with a problem of assigning

“ring tones” to various events. At worst, it puts the sys-

admin in the position of being a musical or soundscape

composer. While some may be capable of making ex-

cellent assignments of musical scores to events, others

may not, and it would be good to have a neutral, canon-

ical way of generating sonic information for wide, de-

fault distribution of an auralizing monitoring package.

It is as if SPAMASSASSIN had been distributed with-

out any of its several hundred default regular expres-

sions; probably few would have actually installed and

used it, requiring days and weeks of development of

their own filters. SPAMASSASSIN's success is due

partly to the fact that it was distributed pre-

programmed.

Moreover, one man's Stairway to Heaven musical alert

is another man's Copacabana. For rare events like in-

coming phone calls, it may be acceptable to have an

auralization that captures entertains, enthralls, startles,

or captivates. However, the more “chatty” the dialogue,

and the more often one must hear an event reported, the

less welcome users find clever and delightful tonal mu-

sical signifiers. Rhythm seems less problematic in this

respect than tone. Previous authors have talked about

chirps and sleep-assisting soundscapes instead of play-

ing sampled music or utterance (e.g., from a film or tv

show). For constant passive monitoring, our experi-

ments show that we need to take another step away from

recognizable sounds in order not to drive the listeners to

annoyance.

466

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:41:50 UTC from IEEE Xplore. Restrictions apply.

II. MAIN IDEA

Our idea is to solve both of these problems by using the

information itself as the sound, and to do so in such a

way that the resulting sounds would ordinarily be de-

scribed as noise.

We began our study by using single-tone, well-spaced

beeps to report the server load, and the server id. This

required the operator to attend to the beeps, to count

them and decide whether the count was interesting. We

now know better, and can convert that beeping count

into something less intrusive, like a warbling whistle.

But at the time, we chose instead to report the top run-

ning process by playing the binary of the process itself.

As a sonification, this binary is just noise. But it quick-

ly becomes recognizable noise, and noise that easily

fades into the background.

To implement this, a few modifications were required.

First, short binaries had to be repeated in order to avoid

sounding alike, and long binaries had to be truncated in

order to avoid taking too much time. More interesting-

ly, in order to have aural significance at a low volume

against background noise (such as server fan noise), we

found it useful to repeat the binary's prefix a few times,

even if the entire binary was long enough that it did not

have to be sampled. This repetition adds a rhythm to

the noise that is less grating over time.

To monitor the top process on the server process stack,

we first create a list of processes that are uninteresting,

which we do not want to hear reported, the do-not-

report list. These are daemons that run constantly, such

as compiz, kthreadd, Xorg, init, dbus-demon, ibus-

demon, httpd, etc. on a sample machine.

Here is a typical listing of top processes:

USER VIRT RES SHR S %CPU %MEM TIME+ COMMAND

root 4448 2460 1456 S 0.0 0.1 0:01.53 init

root 0 0 0 S 0.0 0.0 0:00.01 kthreadd

root 0 0 0 S 0.0 0.0 0:01.40 ksoftirqd/0

root 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0H

root 0 0 0 S 0.0 0.0 0:05.20 rcu_sched

root 0 0 0 S 0.0 0.0 0:00.00 rcu_bh

root 0 0 0 S 0.0 0.0 0:00.05 migration/0

root 0 0 0 S 0.0 0.0 0:00.18 watchdog/0

A monitoring process repeatedly looks down the list of

processes using non-trivial cpu, finds the first that is not

on the do-not-report list, e.g., diff, and reads from the

binary, e.g., /usr/bin/diff. This binary has 447 lines and

is 116k bytes, certainly long enough to be sent to the

sound card as a complete sound. We play sounds with

the padsp command:

padsp tee /dev/audio > /dev/null

by sending a file as input, e.g.,

cat /usr/bin/diff | padsp tee /dev/audio > /dev/null

But to create a more rhythmic and still noise-like sound,

we take the first 5000 bytes, or the full length, eg. 3645

bytes of /usr/bin/diff, and we repeat it at least 3 times as

needed until we reach 15kb (in this case, after the 5
th

iteration, 15kb has been achieved):

limit = 150000/topproclength

for (i=1; i<=limit; i++)

system("head -c 5000 " topproc " >> nextsound")

system("cat nextsound | padsp tee /dev/audio >

/dev/null")

This generates the kind of sound one might hear when

interrupting an old dial-up modem connection. De-

pending on the binary, it may also contain the “R2D2”

recognizable single tone noises that would be familiar

during modem connection negotiation, but these tones

tend to be sufficiently embedded in “modem noise” so

as not to irritate.

Using anything shorter than 5000 bytes makes the bina-

ries hard to differentiate aurally, even when repeated.

15000/5000 guarantees at least a 3x repetition of each

binary prefix. Repetition is less jarring, permits less

attention to be paid while still permitting alarm-type

notification, and helps the sound to recede into the

background.

Here are the sizes, by line, word, and byte count, of a

few of the binaries in /usr/bin (almost all binaries are

longer than 5000 bytes):

 2822 27690 716228 /usr/bin/cc

 14 255 17976 /usr/bin/cd-create-profile

 33 414 17768 /usr/bin/cd-fix-profile

 10 93 9576 /usr/bin/cd-iccdump

 3419 17881 395876 /usr/bin/cdrecord

 72 560 22136 /usr/bin/c++filt

 32 230 9764 /usr/bin/chacl

 200 1243 49420 /usr/bin/chage

 159 469 4459 /usr/bin/chardet

 123 1405 68272 /usr/bin/charmap

 16 156 9712 /usr/bin/chattr

 243 1722 59176 /usr/bin/chcon

Since sounds cannot be included in a paper, and our

descriptions are bit subjective, we reproduce a part of a

binary here, repeated three times:

A#H D�#�:��|�#A �#A#�#C #] #C A#A

K#AA#(D#$;��2�#C #C#�#hA#(p#8;��2�#C �#C#�#h

#L;���#�#A�#A#�#A#�F�

467

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:41:50 UTC from IEEE Xplore. Restrictions apply.

A#H D�#�:��|�#A �#A#�#C #] #C A#A

K#AA#(D#$;��2�#C #C#�#hA#(p#8;��2�#C �#C#�#h

#L;���#�#A�#A#�#A#�F�

A#H D�#�:��|�#A �#A#�#C #] #C A#A

K#AA#(D#$;��2�#C #C#�#hA#(p#8;��2�#C �#C#�#h

#L;���#�#A�#A#�#A#�F�

and compare it to a relatively pure tone:

989

898

989

898

989

8989898

which should give some visual indication of how much

more complex it is. A youtube video of the power spec-

trum of modem noises shows the difference between

pure tones (with power band limited to a small number

of frequencies) and noise-like sounds (with power allo-

cated to a range of frequencies):

To sum at this point, the main benefit of this idea is that

it uses the binary to produce sounds, requiring no

knowledge of the sound generating tool, no knowledge

of music, no attachment or downloading of sounds, no

commitment to a soundscape theme or musical style;

and it adds a basic repetition idea to create palatable

noise-like auditory signals that can fade into the back-

ground, but be recognized when not paying much atten-

tion.

III. WARBLED WHISTLING

In our rack of servers we want to monitor the status of

more than one server at a time. This requires indicating

which server is reporting with each auralized status.

One way to do this is to assign an arbitrary noise signa-

ture to each server. Our solution is actually to use a

tonally more pure signal, but to emit this sound after the

status report. Again, we arrived at this solution after

trying several different strategies for signaling.

Our indication of which server is reporting actually uses

a count of beeps, but it embeds those beeps in a more

noise-like rhythmic sound. The result is more like a

brief whistle that contains a number of warbles. By add-

ing vibrato, the sound does not require attention and

does not cause much fatigue. It may be difficult to dis-

tinguish a 7-warble whistle from an 8-warble whistle at

first, but after listening for a few hours, and hearing

servers report in a fixed order (not necessarily enumer-

ating in numerical order, 1, 2, 3, etc., but possibly in an

order that makes juxtaposed reports more distinguisha-

ble, such as 1, 5, 2, 6, 3, 7, 4, 8), we find it easy to note

which server is reporting, when one decides to listen.

The key idea here is that the counting does not require

attention, but can transmit an id successfully to a person

who decides to listen closely, to determine the count.

At first we announced the id of the server before gener-

ating the sound associated with its status. This required

too much attention. We preferred announcing the id of

the server after auralizing the status. In this way, most

status sounds and id counts could simply be ignored.

When a status was interesting, the operator could then

pay attention to which server was being described.

Here is an abridged text of the sound for id=2, so the

reader may “visualize” it. Note that it is a mixing of

pure tone, 99, and noise-like injection, a random real

number (not just an integer).

999

999

999999999999990.6455349.485645.228647.712137.715941.751843.142078.780646.26

5555.095764.485446.828435.462386.205688.908779.751940.8673477.496818.92525.

765449.826331.06738.165761.859339.725669.192691.599329.719546.249952.979781

.1234.296725.020580.8782891.405380.1629017.877476.643344.617018.122423.5370

16.584170.1289587.390013.96763.42238.642636.6286.804757.389688.371987.84991

3.505425.543184.213018.140232.882729.943296.954148.163371.732671.016697.589

211.921433.488938.416140.05753827.04456.901391.726873.541776.529989.427192.

863862.959693.458761.403834.089512.367032.624550.8755124.726335.386958.3861

45.902014.99993.278633.921193.387412.196730.5099671.021762.771897.099857.15

2023.9710.6355661.966053.326956.0371599999999999999999999999999999999999999

999

999

9999999999996.380680.09097699.048721.822439.644698.384071.047352.775782.532

290.1451679.823279.650017.78213.793843.021461.63474.484948.352164.776315.41

7532.469891.523139.310196.295671.282240.5860670.03230662.97739.458153.15087

6.747088.103475.101938.090618.806368.493388.306080.2869462.702185.615011.46

4137.57382.934194.988054.224084.178986.075612.711929.164060.2997568.000677.

298027.846363.753443.992044.259651.978044.855252.243445.422729.709497.46303

1.164064.27823.74562.360960.7238966.512464.978442.698788.384610.07295176.09

929.2589.236812.984479.952461.044860.9512718.015567.523090.5857624.894928.9

42415.012566.031287.677098.914394.074957.713165.059647.382639.872374.991990

468

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:41:50 UTC from IEEE Xplore. Restrictions apply.

.4296891.790228.177651.77297.05551.7446699999999999999999999999999999999999

999

999

The awk code for generating warbling whistle ids is

simple:

 system("rm -f whoamisound")
 for (i=1; i<whoami+1; i++) {

 for (j=1; j<=beeplength; j++) print 99 > "whoami-

sound"

 for (j=1; j<=beeplength; j++) print 10*rand() >

"whoamisound"

 }

 close("whoamisound")

 system("cat whoamisound | padsp tee /dev/audio >

/dev/null")

This is a general strategy for embedding semantically

interesting information in noisem, to decrease fatigue

during monitoring.

IV. ASSIGNING BINARIES TO PORTS

To auralize port status, we use the tcp connections re-

ported by netstat, a fragment of which might look like:

10.0.0.20:50029 199.16.156.201:443 ESTABLISHED

10.0.0.20:49722 199.59.148.11:443 ESTABLISHED

10.0.0.20:48640 91.189.92.10:443 CLOSE_WAIT

10.0.0.20:41137 104.73.160.113:80 ESTABLISHED

10.0.0.20:33543 91.189.92.24:443 CLOSE_WAIT

10.0.0.20:46051 91.189.92.11:443 CLOSE_WAIT

10.0.0.20:36159 184.50.238.89:80 ESTABLISHED

10.0.0.20:45428 23.79.220.138:80 ESTABLISHED

10.0.0.20:33554 91.189.92.24:443 CLOSE_WAIT

10.0.0.20:48630 91.189.92.10:443 CLOSE_WAIT

The interesting information is the foreign address in the

middle column, the local port in the first column, and

possibly the port status. However, playing this text in

its current form results in a noise-like sound that is not

very different from a netstat report showing an intrusion

on an important port from an IP address that is unrec-

ognized.

One of the practical problems is that we would like to

auralize the DNS-resolved name of the foreign address,

or at least the country to which the IP address is as-

signed. Unfortunately, this DNS-resolution usually

takes too much time for real-time monitoring processes.

In this auralization, we make use of the observation that

the listener naturally learns to recognize, and habituates,

noise-like signatures, but these signatures need only be

consistently associated with the semantics, not actually

generated from a specific textual representation of the

event. In plain words, we can assign an arbitrary noise-

like sound to an event; we just have to maintain that

assignment. (And the assignment need not even be one-

to-one.)

To each port, we assign a randomly generated noise

pattern. For our first experiments, it sufficed to take the

prefixes of the binaries in /bin and /usr/bin. Port 80, for

example, might be /bin/sh, and port 22 might be /bin/ls.

Binaries were also arbitrarily assigned to the first two

fields of the foreign IP addresses.

Because the netstat report can be long, we recommend

reporting only the new entries, not the whole list each

time. Also, when there is new activity there is often a

lot of activity. This can make the reports too long,

filled with repeat visitors. It may be good to maintain a

whitelist of IP addresses that routinely access the server,

and suppress reporting those entries.

The resulting sounds depend on the binaries assigned to

the most common port numbers and IP prefixes. In our

experience, a dozen or two netstat entries sound like

distant machinery with slight variations. Novel access

is perceived like anomalies in the machine; this can

cause the operator to take note, usually by interrupting

the task at hand, and visually attending to the server

logs. This is exactly the kind of auralization we were

attempting to provide.

V. PRIOR WORK

Auralization is a larger subject than its name might sug-

gest (Kleiner 93, Vorlander 2007). LSL is an early tool

for creating program auralizations (Boardman 93, 95,

Khandelwal 95), for example, generating sounds that

correspond to the states in a sorting algorithm. Much of

this work is driven by authors with a musical back-

ground or interest (e.g., Vicker 2006).

Hermann and Hunt (2011) is a “sonification handbook”

that would classify this work as “serendipitous-

peripheral (push/nudge), where “attention is focused on

a primary task whilst information that is useful but not

required is presented on a peripheral display and is

monitored indirectly.” (p. 456) They quote several au-

thors (Tran 2000, Jenkins 1985, Brown 1996) who

share our understanding of auditory channel monitoring

advantages.

PEEP (Gilfix 2000) is the first paper we know to con-

sider auralization for system security. Gopinath (2004)

and Prasath (2004) explicitly considers monitoring a

webserver and intrusion detection using a tool called

469

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:41:50 UTC from IEEE Xplore. Restrictions apply.

JLISTEN. Gopinath is more interested in events than

sounds. Prasath's conclusions were that auralizations

were helpful, and that musical knowledge had no effect

on the ability to use auralization effectively. The library

of sounds used by Prasath include: “Tinkle Bell, Sea

Shore, Bird, Telephone, Music Box, Syn Bass 2, Fanta-

sia, Whistle, Goblins, Piano, Slap Bass 2, Trumpet,

Tubular Bell, Syn Bass 1, Sound Track, Woodblock,

Helicopter.”

Kolano (2007) is recent NASA-supported work along

similar lines, but uses PEEP for auralization: “bird

chirps, cricket chirps, and water flows.” PEEP's water

flows, which are used for reporting states and status, are

probably chosen for many of the reasons that motivate

our work.

Garcia-Ruiz et al. (2010) consider best practices, which

is essentially what our paper aims at producing, but

their work is aimed at teaching network intrusion and

uses musical sounds.

Kennedy (1971), Childs (1976), and Galinsky et al.

(1993) are examples of Human Factors research into

fatigue and stress while doing auditory monitoring.

VI. FUTURE WORK

Future work includes parameterization of the auraliza-

tion scripts to permit some customization. We aim to

distribute a self-contained program to monitor the pro-

cess stack, and another self-contained program to moni-

tor the port activity. Our desire was to close the gap

between auralization tools in theory, and ubiquitous use

among sysadmins. Getting sysadmins to use the tool

“right out of the box,” with no programming required,

will require development and packaging.

As a broader audience is exposed to our noise-like, in-

tentionally non-intrusive but semantically assignable

sounds, data will become available for ascertaining the

effectiveness of the ideas.

VII. CONCLUSION

The impetus for this work was the desire to produce

practical linux server software that improves monitor-

ing. It quickly became clear that visual monitors can be

too dense, and the challenge was to get administrators

to monitor more often, not necessarily monitor more

data. Probing for details can be done once curiosity has

been piqued, or an alarm has been sounded. The ques-

tion was how to get sysadmins to monitor their ma-

chines when they are already busy doing other tasks that

consume their attention.

One author happened to hear a RADIOLAB program on

NPR where MIT brain researcher Matt Wilson de-

scribes listening to the “snap, crackle, and pop” of

dreams; after enough listening, his lab could figure out

what animals were dreaming about, recognizing the

patterns. This led us to the auralization of server states

using recognizable but fairly arbitrary noise-like sonifi-

cations, the potential for auralizing without fatigue, and

the possibility that this would facilitate long-term moni-

toring.

Using the auditory channel for monitoring is too good

an idea not to put into wide practical use. In conclu-

sion, we recommend (1) assigning canonical sounds to

important properties so users do not need to program

their own sounds; (2) using binaries as those sounds to

“play the data directly”; (3) truncating and repeating

those binaries to create a more rhythmic sonification;

(4) using binaries even when they are assigned arbitrari-

ly as signals and sempahores, precisely because they are

noise-like; (5) using tonal signals with numerical con-

tent on occasion, but intermixing and injecting noise,

deliberately, to reduce the demand for attention and

fatigue over prolonged “vigilant” listening.

REFERENCES

Boardman, David B., and Aditya P. Mathur. "Preliminary report on

design rationale, syntax, and semantics of LSL: A specification lan-

guage for program auralization." Dept. of Computer Sciences, Pur-

due University, W. Lafayette, IN Sept 21 (1993).

Boardman, David B., et al. "Listen: A tool to investigate the use of

sound for the analysis of program behavior." Computer Software

and Applications Conference, 1995. COMPSAC 95. Proceedings.,

Nineteenth Annual International. IEEE, 1995.

Brown, John Seely, and Mark Weiser. "The coming age of calm

technology."http.//www. ubiq., com/hyp ertext/weiser/acnlI

Lture2endnote. Htm (1996).

Childs, Jerry M. "Signal complexity, response complexity, and signal

specification in vigilance." Human Factors: The Journal of the

Human Factors and Ergonomics Society 18.2 (1976): 149-160.

Garcia-Ruiz, Miguel A., et al. "Best Practices for Applying Sonifica-

tion to Support Teaching and Learning of Network Intrusion Detec-

tion." World Conference on Educational Multimedia, Hypermedia

and Telecommunications. Vol. 2010. No. 1. 2010.

470

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:41:50 UTC from IEEE Xplore. Restrictions apply.

Gilfix, Michael, and Alva L. Couch. "Peep (The Network Auralizer):

Monitoring Your Network with Sound." LISA. 2000.

Gopinath, M. C. "Auralization of intrusion detection system using

Jlisten."Development 22 (2004).

Hermann, Thomas, and Andy Hunt. The sonification handbook.

Berlin: Logos Verlag, 2011.

James J. Jenkins. Acoustic information for object, places, and events.

In W. H. Warren, editor, Persistence and Change: Proceedings of

the First International Conference on Event Perception, pages 115–

138. Lawrence Erlbaum, Hillsdale, NJ, 1985.

Galinsky, Traci L., et al. "Psychophysical determinants of stress in

sustained attention." Human Factors: The Journal of the Human

Factors and Ergonomics Society 35.4 (1993): 603-614.

Khandelwal, Vivek. On program auralization. Diss. Purdue Univer-

sity, 1995.

Kleiner, Mendel, Bengt-Inge Dalenbäck, and Peter Svensson. "Aural-

ization-an overview." Journal of the Audio Engineering Society

41.11 (1993): 861-875.

Kolano, Paul Z. "A scalable aural-visual environment for security

event monitoring, analysis, and response." Advances in Visual Com-

puting. Springer Berlin Heidelberg, 2007. 564-575.

McGregor, Colin. "Controlling spam with SpamAssassin." Linux J

153.1 (2007).

Prasath, R. Jagadish. Auralization of web server using jlisten. Diss.

Master’s thesis, Purdue University, BITS, Pilani, India, 2004.

Tran, Quan T., and Elizabeth D. Mynatt. "Music monitor: Ambient

musical data for the home." Extended Proceedings of the

HOIT (2000): 85-92.

Vickers, Paul, and James L. Alty. The well-tempered compiler: The

aesthetics of program auralization. MIT Press, Boston, MA, 2006.

Vorländer, Michael. Auralization: fundamentals of acoustics, mod-

elling, simulation, algorithms and acoustic virtual reality. Springer

Science & Business Media, 2007.

471

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 24,2021 at 16:41:50 UTC from IEEE Xplore. Restrictions apply.

